二分決定グラフにもとづくフォトニック結晶集積デバイス

Photonic-Crystal Logic Devices Based on the Binary Decision Diagram

浅井 哲也, 雨宮 好仁, 小柴 正則

Asai Tetsuya, Amemiya Yoshihito, and Koshiba Masanori

北海道大学 工学部

Department of Electrical Engineering, Hokkaido University

1. はじめに

フォトニック結晶は屈折率の異なる2種の媒質からなる人 工結晶である。これを用いると、光波長程度に寸法の小さ い光導波路素子[1]や大きな分散・異方性を呈する光制御 材料を構成できる可能性がある。そのため情報処理システ ムに応用して新しい集積フォトニクス - 超高速の光集積回 路を構築しようという研究が始まった。ここでは「フォト ニック結晶と二分決定グラフを組合せて新しい光集積回路 を創る」という提案[2]を紹介する。

2. ディジタル論理の表現と回路化

フォトニック結晶を用いて光集積回路を構成しようとする とき、はじめに次の点が問題となる。すなわち従来のシリ コン集積回路では、目的とするディジタル論理処理をブー ル代数式で表現し、それをMOSトランジスタの組合せで 具現化(回路化)している。ところがフォトニック結晶デ バイスはMOSトランジスタとは動作概念が異なるので、 ブール代数式を回路化しようとしても既存の回路アーキテ クチャを用いることができない。そのため光集積回路の実 現は難しい状況であった。

3. グラフ論理表現にもとづく回路アーキテク チャ

上の問題に対処するため、著者はフォトニック結晶デバイ スに適した回路アーキテクチャについて検討し、ブール代 数式に代えてグラフ論理表現にもとづく回路構成が好ま しいという結論を得ている。グラフ論理表現とは「有向グ ラフ上でトークン(動点)を移動させることにより論理処 理を表す」手法をいう。その代表例が以下に述べる二分決 定グラフである。提案する光集積回路では、二分決定グラ フに対応する回路をフォトニック結晶中に形成し、そのグ ラフ回路に沿って光を伝搬させることにより論理処理を 行う。

4. 二分決定グラフとは

二分決定グラフはディジタル関数のシャノン展開をグラフ 表記したものである。多くの論理関数をブール代数式より も簡潔に表現できる。グラフは多くの節点と有向枝からな り、節点には入力変数 Xiが対応している(図1)。論理 値を求めるときには頂点から定数節点に向かってトークン を動かす。各節点においては変数の1-0値に対応する有 向枝にトークンを進める(Xi = 1 なら 1-枝、Xi = 0なら 0-枝)、トークンが到着した定数節点をみて論理を判 定する。すなわちトークンが定数節点1に到着すれば論理 値は1、定数節点0に到着すれば論理値は0である。

実用の論理システムで扱われる関数の多くは、互いに 共通の部分をもつことが多い。このようなときには、部分 グラフを共有する一組の二分決定グラフを使えば、複数の 関数を簡潔に表現できる(図2)。これを共有二分決定グ ラフという。

図 1 二分決定グラフの例.

図 2 共有二分決定グラフの例 (4 ビット加算).

二分決定グラフでは、入力変数の値を与えると、頂点 からいずれかの定数節点に至る経路がただ一つ定まる。し たがって、論理値を判定するために、定数節点1から頂点 に向けてトークンを動かしてもよい。トークンが頂点に到 達すれば論理値は1、経路が切れて到達できないとき論理 値は0である。

5. フォトニック結晶素子による回路構成

フォトニック結晶を用いて二分決定グラフを具現化すると きには、グラフの節点を光の二分岐スイッチ素子で構成

図 3 方向性結合器による二分岐スイッチ.

光パルスの流出端(定数節点)

図 4 フォトニック結晶の中に集積した二分決定グラフ光回路 [図 1(a) のグラフを回路化したもの].

し、節点を結ぶ有向枝を光導波路で構成してグラフ回路を つくる。そして光パルスをトークンとしてグラフ回路上を 移動させて論理処理を行う。

二分岐スイッチ素子に必要な機能は、流入した光パル スを入力変数の1-0に応じて1-枝と0-枝に振り分ける ことである。この機能を実現するための第一候補として、 光導波路からなる方向性結合器を考える(図3)。電圧信 号(入力変数)で導波路対の結合係数を変化させること により、光の流出経路を切換えて二分岐スイッチを実現す る。フォトニック結晶を用いると、方向性結合器の寸法を 光波長の数倍程度に小さくできる[1]。

光集積回路の構成例を図4に示す。フォトニック結晶の 中に二分岐スイッチ素子を集積してグラフ回路をつくる。 グラフの頂点から光パルスを入れ、定数節点でそれを観測 して論理を判定する。判定結果を電圧信号に変換して出力 するインターフェイスが(実用の際には)必要となるが、 それは一関数あたり一つだけあればよい。

共有二分決定グラフを回路化する場合には、グラフの 定数節点1から光パルスを入れ、それぞれの頂点で光パル

図 5 フォトニック結晶による二分岐スイッチの例.

スの到着有無を観測する。そうすることで複数の関数を同時に論理判定できる。このときには、二分岐スイッチに替えて一対の光スイッチ(電圧信号で光の透過と遮断を切り換えるオンオフ素子)を使用してもよい。

以上の光集積回路の論理動作は非常に速い。いま回路 構成に必要な光路長から動作速度を見積もると、たとえば 32 ビット加算器では 演算時間 5 ps ~ 10 ps と超高速が 期待できる(シリコンLSIでは 1 ns ~ 2 ns)。

6. フォトニック結晶による二分岐スイッチ素子

この光集積回路をつくるときのキーポイントは、効率のよい二分岐スイッチ素子の実現である。方向性結合器の他に も幾つか可能性がある。次に候補を二つあげる。

- マッハ-ツェンダー干渉計の片アームを通る光を入力信
 号で位相シフトして光経路を切り換える(図5(a))。
- スーパープリズム効果 [3] を入力信号で変調して光の 進行方向を切り換える(図5(b))。

フォトニック結晶では従来の光学材料に見られない種々の 物理現象が発現する。その中で「電圧信号により光の進行 経路や透過率が大きく変調されるような現象」を探して利 用することが今後の課題である。

参考文献

- Koshiba M., et al., "Time-domain beam propagation method and its application to photonic crystal circuit components," *IEEE J. Lightwave Tech.*, Vol. 18, No. 1, (2000).
- [2] Asai T., et al., "A photonic-crystal logic circuit based on the binary decision diagram," in *International Workshop on Pho*tonic and Electromagnetic Crystal Structures (PECS), (March 8-10, 2000).
- [3] Kosaka H., et al., "Superprism phenomena in photonic crystals: toward microscale lightwave circuits," *IEEE J. Lightwave Tech.*, Vol. 17, No. 11, pp. 2032-2038, (1999).