アナログ電子回路化に適した相対奥行き量検出モデル

Detecting depth from egomotion for analog hardware implementation

林 秀樹,浅井 哲也,雨宮 好仁

Hayashi Hideki, Asai Tetsuya, Amemiya Yoshihito

北海道大学 工学部

Department of Electrical Engineering, Hokkaido University

1. はじめに

カメラを動かした時に写る「像の移動度」とカメラから の「距離」の関係から、物体の奥行きを検知することがで きる[1],[2]。この移動視に基づく奥行きの検出方法では、視 野中のすべての画素における局所速度の計算が極めて重要 である。近年、生体の構造に学んだ局所速度検出アナログ 電子回路が提案・試作されており[3]、その高速動作・構造の 簡単さから、奥行き検出への適応が期待されている。本稿 では、生体の構造に学んだ局所速度検出アーキテクチャに もとづく奥行き検出アルゴリズムを提案し、計算機シミュ レーションにより、そのアナログ電子回路化の指針を探る ことを目的とする。

2. 奥行き検出の原理と計算モデル

物体の奥行き検出の原理を図1に示す。イメージセン サーを左右に動かすと、センサー近傍の物体の像は大きく 動き、遠方の物体の像はあまり動かない。つまり、物体の 像の相対的な速度の大きさが、物体の奥行きを表している [1]。このとき、物体はエピポーラ面上で「直線」として表 され、奥行きは直線の「傾き」で表される。

今回提案する奥行き検出アルゴリズムは、次の4ステッ プからなる。i) 入力画像の二値化, ii) 二値化された画像の エッジ検出, iii) エッジ画像の一時記憶, iv) 記憶画像とエッ ジ画像の相関計算。はじめの二値化処理では、入力画像を 平滑化したのち、定められた閾値に従って画素値を二値化 する(雑音の除去)。エッジの検出処理では、前段階で二 値化した隣接画素間の排他的論理和を計算する。

エッジ画像の一時記憶と相関処理を行う二次元局所速度 検出モデルを図2(a)に示す[図2(b)は、図2(a)の1-2 面に沿った断面図]。遅延素子は、エッジ信号を入力とし、 隣接した相関素子へ遅延信号を出力する。相関素子は、エッ ジの信号と前段の遅延信号の相関値を出力する。エッジ信 号が画素間を移動する時間だけ相関素子の出力が得られる。 したがって、相関素子の出力は物体の速度に反比例する。

3. シミュレーション結果

図 3,4 にシミュレーション結果を示す。図 3(a), (b) に、 イメージセンサが移動する前の初期画像 (t = 0) およびセ ンサが左に移動した画像を示す(比較のため、図3(a)の画 像を図 3(b) 中に重ねて表示してある)。図中、一番大きな 球体が最もカメラから近い位置にある物体である。図3(c) は、得られた出力ベクトルを示している。図4は、ベクト ルの大きさと入力画像の物体の奥行きとの関係を示してい る。グラフの縦軸と横軸は、それぞれベクトルの大きさと 相対的な奥行き量を表している(横軸の値は一番近くにあ る物体の奥行き量で規格化)。図3(c)と図4より、手前の 物体に対応する出力が小さく、奥の物体の出力が大きく検 出されることを確認した。

4.まとめ

シミュレーション結果より、提案したシステムが相対的 な奥行き量を計算できることがわかった。提案したシステ ムで必要な二値化処理,エッジ検出処理および局所速度検 出処理については、これまで比較的シンプルな電子回路が 提案・試作されており、提案したアルゴリズムに比較的容 易に適応可能である。今後は、提案したシステムのアナロ グ電子回路化とあわせて、移動視にもとづく三次元画像の 復元システムの構築を行う予定である。

参考文献

- [1] 山本 正信、"連続スレテオ画像からの三次元情報の抽出、"信学論、 vol. J69-D, pp. 1631-1638, 1986.
- [2]C. R. Bolles, H. H. Baker, H. D. Marimont, "Epipolar-plane
- The Bollet, H. D. Mathion, "Dippoint plane image analysis: an approach to determining structure from motion," Int. J. Computer Vision., vol. 1, pp. 7-55, 1987.
 T. Asai, M. Ohtani, and H. Yonezu, "Analog MOS circuits for motion detection based on correlation neural networks," Jpn. 1990, 2007, 2 [3] J. Appl. Phys., vol. 38, pp. 2256-2261, 1999.

Fig.1 Depth detection from relative differences between local velocities.

