抵抗変化型メモリをシナプスとして利用した ニューラルネット集積回路に関する考察 Towards neural-network integrated circuits exploiting resistive-RAM-based synaptic devices

赤穂伸雄 (PY)[†], 浅井哲也[†], 柳田 剛[‡], 川合知二[‡], 雨宮好仁[†]

Nobuo Akou(PY), Tetsuya Asai, Takeshi Yanagida, Tomoji Kawai, and Yoshihito Amemiya †北海道大学大学院情報科学研究科

‡大阪大学産業科学研究所産業科学ナノテクノロジーセンター

akou@lalsie.ist.hokudai.ac.jp

Abstract— We propose a possible conceptual LSI architecture for neural networks using resistiverandom-access memory (ReRAM) devices. Because ReRAMs electrically act as resistors, and they can preserve the resistance according to the amount of the current flows, one may replace conventional synaptic devices with ReRAM synaptic devices. In this paper, to simulate possible neural network circuits, we propose a behavioral SPICE model of unipolar ReRAMs, and then show examples of possible LSI structures for Hopfield-type and multi-layer neural networks exploiting a conventional 3D LSI technology and cross-bar wiring circuits built with unipolar ReRAMs.

Keywords—ReRAM, neural network LSI

1 まえがき

近年、不揮発性メモリの大容量化を目指した抵抗変化 型メモリ(ReRAM)の研究が盛んに行われている[1]。 この素子は電気的には抵抗素子であるが、その抵抗値の 書き換え(記憶)が可能である。ニューラルネットワー クハードウェアにおいてニューロン回路間を結合するシ ナプス回路は通常は抵抗(等価)素子で構成されるが、 その抵抗値は学習に応じて書き換える必要がある。従来 の抵抗素子の代わりに ReRAMを用いれば、より直接的 にシナプスの役割を果たせそうである。現在、ReRAM 構造を用いた基本的なシナプスデバイス(シナプス単 体)に関する研究報告[2]があるものの、それらを多数 組み合わせたネットワーク規模の回路に関する報告はさ れていない。そこで本研究では相互結合型ネットワーク および多層ネットワークを取り上げ、ReRAMを用いて ネットワークを組む方法について考察する。

2 抵抗変化型メモリ(ReRAM)

本研究の対象とする ReRAM (ユニポーラ型) は酸化 薄膜を金属で挟んだ構造を持つ(図1a)。この ReRAM の金属端子間は初期状態では絶縁されている。この金 属端子間に電圧 (V_{TH})をかけると端子間にフィラメン トと呼ばれる電流パスが形成され、絶縁状態 (OFF) か ら抵抗状態 (ON) に変化すると考えられている。測定時 には ON 状態になった時の最大電流を制限する必要が ある。この制限電流をコンプライアンス電流 (I_{C}) と 呼び、 I_{C} の大きさによって記憶する抵抗値が決まる。 ReRAM が ON 状態にある時に I_{C} より高い電流 (I_{TH}) を流すとフィラメントが切れ、OFF 状態に戻ると考え られている [1] (図 1b)。

3 ReRAM の簡易 SPICE モデル

ReRAM を用いたニューラルネットワーク LSI を設計 する場合、SPICE シミュレーションのための ReRAM

の等価モデルが必要となる。本章では、ReRAMのロジック動作を取り入れた等価回路を提案する。

ReRAM は電気的には抵抗素子であるため、ReRAM の両端子間をオームの法則(状態に応じて抵抗値が変化)を満たす電流源 I_R で表すことを考える(図 2b)。

ReRAM のロジックメモリ動作を模擬するために双安 定の系を用いる。図2aに双安定な力学系ポテンシャルの 例を示す。簡単のためこの関数を $U = x^4 - x^2$ と置く。こ のポテンシャルを持つ系が安定状態であるためには、系 のダイナミクス($rac{dx}{dt}$)がリアプノフの式 $rac{\partial U}{\partial t}=rac{\partial U}{\partial x}rac{dx}{dt}\leq 0$ を満たせばよい。よって、 $\frac{dx}{dt} = -\frac{\partial U}{\partial x} = -x^3 + 3x$ を得る。この系を SPICE に組み込むため、上式と相似な系 を電子回路で構成する。左辺の微分項にはキャパシタ C_1 を用い(xは C_1 にかかる電圧 V_{C1} に対応)、右辺に は3次式を満たす非線形電流源 I1 を用いる (図 2c)。 ReRAM の ON 抵抗は上述の通り I_C の大きさで決ま ON 時の $I_{\rm C}$ の値を保持する必要があ るため、OFF る。そのために電流を保持するインダクタ L1 を用いる。 L_1 が保持する電流が $I_{
m C}$ に等しくなるまで参照電圧を 積分するために、電流制御電圧源 V₁を用いる (図 2d)。 ReRAM の抵抗値は OFF ON 時に急減少するため、 OFF 変化の条件を満たしてしまう この変化時に ON ON 判定を行う回 と系が不安定になる。従って OFF 路素子にヒステリシスを持たせるか、判定結果(V_{C1}) を短時間保持する機構が必要となる。本稿では簡単のた め CR 遅延回路を用いる (図 2e)。ただし、V_{C1} を C₁ に直接繋げると双安定系のダイナミクスの動作を妨げ

るため、電圧制御電圧源 V_2 を介して抵抗 R_1 とキャパ シタ C_2 を繋げる (V_{C1} の遅延電圧は V_{C2} に現れる)。 先に述べたように、OFF ON 時における I_C は保 持する必要がある。この電流を確定するために、 V_{C2} の 変化に対して遅れて変化する電圧 V_{C3} を作り、 V_{C3} が OFF 状態のときに V_1 を動作させる (つまり、 L_1 が保 持する電流が I_C に等しくなるまで参照電圧を出力させ る)。この遅れもまた CR 回路で構成する (図 2e)。

OFF 状態にある ReRAM は両端子間の電圧が V_{TH} 以

図 2: 二つの安定点を持つ系と等価回路図

図 3: シミュレーション結果と SPICE コード

上になるとON 状態に変化する。この時に、モデルの安定点を移動させる必要がある。そのために、両端子間の電圧が V_{TH} 以上になったとき、 C_1 を充電する。逆に、ON 状態にある ReRAM は両端子間の電流が I_{TH} 以上になるとOFF 状態に変化する。この時も安定点を移動させる必要がある。そのために、両端子間の電圧が I_{TH} 以上になったとき、 C_1 を放電する。

提案モデルの動作を確認するため、ReRAM の状態 が OFF ON OFF と変化する様なシミュレーショ ンを行った。TiO₂ 薄膜素子を使った実験結果および特 性式(図1c)を用い、OFF から ON 状態に変化すると きに I_{C} (=10mA)で電流を制限した。その結果、図 3 左の IV 特性を得た。この SPICE コードを図 3 右に 示す。実デバイスの測定結果から、 I_{C} -ON 抵抗値特性、 I_{C} - I_{TH} 特性、 V_{TH} 、OFF 抵抗値が読み取れれば、それ らを SPICE コードに与える事で本モデルが利用できる。

4 ReRAM を用いたニューラルネットワーク LSI

本章では、ReRAM を用いた相互結合型ニューラル ネットワーク(例: Hopfield Network)およびマルチレ イヤーネットワークの構成案を示す。

ReRAMを用いた相互結合型ネットワークの基本構成 を図4に示す。酸化薄膜を金属配線のクロスバーで挟 む事により、各交差点にReRAMが構成される。上層, 下層の金属配線をそれぞれ軸索,樹状突起の配線とすれ ば、各交差点のReRAMはシナプスとなる。この構成 では、各軸索がReRAMを通して全ての樹状突起につ ながるため、相互結合型ネットワークが構成できる。

図5左上にマルチレイヤー(3レイヤー)ネットワークの例を示す。この配線構造を「配線が絡まらないように」三次元に焼き直した構造を図5右上に示す。図中の四角はニューロンを表し、抵抗はシナプスを表す。この構造を具体化するために、三次元LSI技術[3]が利用できそうである。その構成案を図5左下に示す。三次元LSIは、二次元チップを接着剤で重ね合わせることにより作製される。二次元チップ間を垂直に配線する必要が出てくるが、この配線は基板を貫通する垂直配線と接着部分を導通するマイクロバンプによりつくられる[3]。 提案する三次元LSIは、ニューロン層(第1,3,5層)と、

図 4: 相互結合型ネットワークの構成案

図 5: マルチレイヤーネットワークの構成案

シナプス(ネットワーク)層(第2,4層)にわけられる (図5左下)。ニューロン層は、しきい演算,読み出し, 書き込み,およびReRAMの抵抗値書き換え信号を生 成するCMOSLSIの層である。ネットワーク層は、ク ロスバー配線とReRAM層からなる。このLSIの内部 構造を三次元的に表すと図5右下のようになる。この 構造では、軸索ラインと樹状突起ラインが垂直に配置 され、ネットワーク層の上下でニューロンの並びが90 度回転する。よって、提案したクロスバー構造を用いれ ば、マルチレイヤーネットワークのシナプス配線を絡ま せることなく、回路(デバイス)を構成できる。

3章で示した ReRAM 等価回路を用いることにより、 ニューラルネットワークの回路シミュレーション ト記のニ を行うことができる。これまで、Hopfield network を 例にとって、予備的な回路シミュレーションを行ってき た。その結果、学習をする際 (Hopfield network の場合 は記憶パターンを結合に埋め込む際)に、回路的な工夫 が必要となることがわかってきた。具体的には、図4, 5 右下に示す ReRAM のクロスバー構造では、ある特定 の ReRAM (シナプス)の抵抗値を書き換えるための回 路上の工夫が必要である(多数の ReRAM が軸索,樹 状突起ラインを共有しているため、所望の ReRAM 以 外の ReRAM の抵抗値も書きかわってしまう恐れがあ る)。この問題は、書き込み回路のアーキテクチャ上の 工夫、または ReRAM のデバイス的な工夫 (3 端子化) により解決出来る見込みがある。

参考文献

- A. Sawa (2008) "Resistive switching in transition metal oxides. "Materials Today, 11(6), 28-36.
- [2] Y. Sasago, et. al, (2008) Proceedings of the 214th ECS Meeting, Abs# 2116.
- [3] H. Kikuchi, et. al, (2008) Japanese Journal of Applied Physics 47(4), 2801-2806