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Abstract—A novel reaction-diffusion cellular-automaton model

that generates Turing-like spatial patterns is proposed. The

model employs linear diffusion fields of activators and inhibitors

and a discrete transition rule after diffusion. Theoretical anal-

ysis of the one dimensional model proved that i) spatial distri-

bution given by a periodic square function is stable at the equi-

librium and ii) the spatial frequency is inversely proportional to

the square root of a diffusion coefficient of the inhibitors.

I. Introduction

In the process of ontogeny in a multicellular organism, the or-
ganism develops from a fertilized egg into matured differentiated
cell groups, through repeated division/differentiates. Turing [1]
suggested the concept of “Diffusion (driven) instability” for phe-
nomena in systems where diffusion is able to enhance transition
from a homogeneous state to a spatially in-homogeneous sta-
ble state. In his framework, time development in the system
is described by the sum of reaction and diffusion. The former
represents local production/extinction of the substance or state
and the latter represents a transport process, which tends to
dampen any inhomogeneity of the neighboring region, called
the reaction-diffusion (RD) system. He gave an example where
the spatial instability of a spatial homogeneous structure could
take place through the addition of the diffusion effect. This
Turing RD model is well known as one in which stable striped
or spotted patterns are generated.

There are many ordered complex patterns in nature. For ex-
ample, one can see patterns in animal skins where the patterns
are formed spontaneously. Turing’s and modified RD models
have been studied because of their significance in explaining
pattern formations on animal skins. Striped patterns can not
only be seen in animal skin but also human fingerprints. Finger-
print patterns give us important cues for distinguishing individ-
uals. Recent progress with digital microprocessors will certainly
push advances in intelligent security systems that recognize fin-
gerprints patterns. This paper deals with the basic mechanism
and implementation of restoring striped/spotted patterns.

II. Model and the Theoretical Analysis

The RD system is a complex system in which the reaction
and diffusion of chemical species coexist under nonequilibrium
conditions. It produces a variety of orders, rhythms, and self-
organizing phenomena observed in nature and in life. Typical
examples of such patterns are marking patterns on various ani-
mals, which are referred to as Turing patterns [2], [3].

Turing patterns can usually be obtained by solving math-
ematical RD models described by a set of partial differential
equations (PDE) that are represented by continuous spatiotem-
poral variables. Several attempts to reproduce Turing patterns
with limited computational resources have been made over the
years [4], [5], [6], [7], [8], [9]. A typical example is the use of
cellular automata (CA) where the space is separated by a set of
discrete cells, and time and cell state are represented by discrete
values. Gerhardt, Schuster and Tyson have discretized the RD
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Fig. 1. Diffusion of activators and inhibitors on (a) continuous model

and (b) discrete model.

model based on chemical system [5], [6]; Markus and colleagues
have shown the way to avoid unisotropy of the pattern and de-
scribed various shell patterns [7]; Weimar, Tyson, and Watson
have generalized CA model based on RD model and evaluated
CA in relation to PDE [8], [9]. In the way to construct CA
model, simplifying the nonlinear dynamics in a continuous RD
model is a difficult task because the differential equations are
rewritten by conditional divergence rules in the CA.

Young [4] proposed a simplified discrete CA model for de-
scribing Turing patterns. He introduced a discrete model for
diffusion effects between chemical substances and represented
all the states (usually they had two variables; i.e., activators
and inhibitors) with a single binary {1,0} variable. Then, he
further simplified the diffusion of the two chemical substances.

One necessary condition for generating Turing patterns is that
activators only influence their local neighbors (hard to diffuse),
while inhibitors not only influence their neighbors but distant
cells (easy to diffuse). Figure 1(a) illustrates the diffusion profile
of activators and inhibitors in a continuous model, where R rep-
resent the distance from the center of diffusion, R1 the position
where activators and inhibitors have the same concentration,
and R2 the position where the concentration of inhibitors is
asymptotically zero. When R < R1, activators and inhibitors
produce “active effects” on the field because the concentration of
activators is higher than that of inhibitors. When R1 < R < R2,
they produce “inhibitory effects” because the concentration of
inhibitors is higher.

Young simplified the effects on distance R as illustrated in
Fig. 1(b). In his CA model, a cell whose state is “1” within R <
R1 has positive effects W1, while a cell whose state is “1” within
R1 < R < R2 has negative effects W2. The transition of a cell
in position r is determined by the weighted-sum of cells within
R < R2 whose states are “1” expressed as

∑
|r−ri|≤R2

W , where

W represents the weight strength. If the summed value is zero,
no transition occurs, while if the value is positive (or negative),
the subsequent state of the cell is set to “1” (or “0”). This step
transition rule corresponds to chemical reactions in continuous
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Fig. 2. DoG responses of proposed model for single square-pulse input.

RD models. Young showed that stripe patterns and then spot
patterns appeared on the CA with fixed R1, R2 and W1 by
changing the value of W2. Surprisingly, all the patterns became
stable within 10 steps, even when random initial patterns were
given to the CA.

A. A modified RD CA model

In Young’s simplified CA, the diffusion terms in the contin-
uous RD model are represented by the weighted summation of
neighboring cells, while the reaction terms in the RD model are
represented by the sign of the sum. Therefore, to describe a
cell’s transition, the cell has to refer to its neighboring cell’s
states. Since the number of neighboring cells is approximately
calculated by π × R2 × R2, the number of physical connection
wires (on CA hardware) to refer the neighboring cell’s states
increases significantly when R2 increases. Moreover, the CA
cannot generate spatially smooth patterns because step func-
tions are used in the cell transition rule. A promising solution
to these problems is using a discrete diffusion equation with a
four-point spatial approximation method and an analog sigmoid
function in the rule instead of the step function.

The weighted-summing computation described above is done
by the diffusion fields. In other words, activators and inhibitors
diffuse in individual diffusion fields and are then convoluted by
a 2D array of cells. Each cell’s state is determined by the differ-
ence between the concentration of activators, u, and inhibitors,
v, at a given spatial point, (x, y). Diffusion equations for vari-
ables u and v are integrated for time δt. Then a cell’s subse-
quent state is determined by the value of the sigmoid function
for u− v. The dynamics can be formulated as

1. (Diffusion)
∂u(r, t)/∂t = Du∇2u(r, t),
∂v(r, t)/∂t = Dv∇2v(r, t),

2. (Reaction)

u(r, δt(n + 1)) = v(r, δt(n + 1)) = f
(
u(r, δt · n) − v(r, δt ·

n)− c
)
,

f(x) =
(
1 + exp(−βx)

)−1
,

where n represents the time step, r = (x, y), c is the offset value
of the sigmoid function, and β is the slope of the function. Let us
define this sequential operation as “one cycle”. In the following,
we see that the system produces spatiotemporal patterns by
repeating this cycle.

B. Theoretical Analysis

Here let us analyze operations for the proposed model in 1D
space and reveal the relation between the spatial frequency of
equilibrium patterns and diffusion coefficients.

Since an impulse response of a diffusion equation is repre-
sented by the Gaussian, that of u − v is given by a ‘difference
of Gaussian’ (DoG) function:

DoG(x, t) =
1√
4πt

[
1√
Du

exp

(
−x2

4Dut

)
− 1√

Dv

exp

(
−x2

4Dvt

)]
,

(1)
where x represents the space. Differential distribution u − v,
after activators and inhibitors are diffused for time δt, is thus
given by

zn(x) ≡
∫ ∞

−∞
rn(x−X) ·DoG(X, δt) dX, (2)

where rn(x) represents an initial input to u and v at the n-th
cycle. Therefore, the dynamics of the proposed model can be
represented by

rn+1(x) = f [zn(x)], (3)

where rn+1(x) represents the subsequent initial input. Assum-
ing the equilibrium state, we obtain

r∗(x) = f [z∗(x)], z∗(x) =

∫ ∞

−∞
r∗(x−X)·DoG(X, δt) dX, (4)

where z∗(x) and r∗(x) represent the equilibrium distribution of
u−v and the resulting sigmoid outputs. Assume the equilibrium
distribution is

r∗(x) =

{
1 (−a < x < a)
0 (else),

(5)

where a > 0. For this input, we obtain

z∗(x) =

∫ x+a

x−a

DoG(X, δt) dX =
1

2

[
erf

(
x + a

pu

)
−

erf

(
x− a

pu

)
− erf

(
x + a

pv

)
+ erf

(
x− a

pv

)]
, (6)

where pu,v ≡
√

4Du,vδt and erf(·) represents the error function.
To ensure that input r∗(x) is stable, z∗(x) must be positive for
−a < x < a, and be negative for other x. Figure 2 plots function
z∗(x) for given r∗(x) when Du = 0.01, Dv = 0.1, δt = 0.01, and
a = 0.2. In this example, we see that the sign of z∗(x) for the
center (x ≈ 0) and surrounds (|x| > a0 in the figure) is indefinite
because of z∗(x) ≈ 0 in these regions. This results in unstable
r∗(x) at x ≈ 0 and |x| > a0.

An error function can be represented in the form of a normal
(Gaussian) distribution

erf(x)

2
=

∫ √
2σx

0

1√
2πσ

exp
(
− y2

2σ2

)
dy, (7)

where σ2 represents the variance. Using the 3σ law of the
Gaussian, we can approximately obtain the values of x where
z∗(x) ≈ 0 as

x = −a− 3pv√
2

, −a +
3pv√

2
, a− 3pv√

2
, and a +

3pv√
2

, (8)
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Fig. 3. Pattern formation on 1D model.

which indicates that the region −2a ≤ x ≤ 2a of r∗(x) is stable
as long as a ≤ 3pv/

√
2 (≡ ac). Therefore, for a periodic square-

wave input,

r∗(x) =

{
1

(
(4n− 1)a < x < (4n + 1)a

)
, (n = 0,±1,±2, . . .)

0 (else),

(9)
whose primary spatial frequency f0 is given by 1/4a, I conclude
that a square wave of f0 ≥ 1/4ac =

√
2/12pv is stable in the

subsequent cycle.
For periodic waves of f0 < 1/4ac, regions of x where z∗(x) ≈

0 will exist, which results in r∗(x) ≈ 0.5 (not 0 or 1). Let
us estimate this region by employing piecewise linear function
fpwl(·) instead of sigmoid function f(·). Because df/dx|x=0 =
β/4, we obtain

f(x) ≈ fpwl(x) ≡
{

βx/4 + 0.5 (−2/β ≤ x ≤ 2/β)
1 (x > 2/β)
0 (x < −2/β),

(10)

which means that r∗(x) will not take 0 or 1 when −2/β ≤
z∗(x) ≤ 2/β. Therefore, the value of x where z∗(x) = ±2/β de-
termines stable wave frequency. To calculate this, the following
z∗(x) is considered,

z∗(x) =
1

2

[
erf

(
x + a

pu

)
− erf

(
x + a

pv

)]
, (11)

around x = −a for simplicity. When the argument of the error
function is large, the following asymptotic expansion can be
used:

erf(x) ≈ 1− 1

x
√

π
exp(−x2). (12)

Therefore, when pu ¿ pv (du ¿ dv), one has

z∗(x) ≈ 1

2
√

π

[
pv

x + a
exp

(
− (x + a)2

p2
v

)]
. (13)

The value of x where z∗(x0) = 2/β is thus given by

x0 = pv

√
F (2/k2)

2
− a, (14)

where k ≡ 4
√

π/β and F (·) represents the inverse function of
Lambert’s W function. Therefore, I conclude that i) r∗(x) is

Fig. 4. Snapshots of stripe-pattern formation observed with proposed

model.

not stable when the wavelength is larger than 2x0 and ii) the
stable wavelength is proportional to pv (square root of Dv).

Figure 3 has the simulation results for δt = 0.01, Du =
0.01, Dv = 0.1 and β = 104 with a cyclic boundary condition.
Step input was given at the initial cycle. After a few iterations,
a stable square wave appeared. The primary spatial-frequency
agreed well with the theoretical prediction (f0 = 0.5x0). Fur-
thermore, by changing the values of Dv, I numerically confirmed
that the equilibrium wave frequency is inversely proportional to
the square root of Dv.

Figure 4 is an example of striped pattern formation on a
2D model (Dv/Du = β = 10, c = 0, δt = 1). The values of

f
(
u(r, δt·n)−v(r, δt·n)−c

)
are represented on a grayscale (f(·)

= 0: black, f(·) = 1: white). The initial state was randomly
set within the values of [0:1]. After approximately 10-cycle up-
dates, a stable striped pattern was generated. The space was
filled with striped patterns according to the initial spatial dis-
tribution. Therefore, if a striped pattern such as a fingerprint
pattern is given to the CA, local patterns that do not fit the
striped global patterns are replaced with striped patterns based
on the global patterns.

Figure 5 shows a pattern diagram for two variable parameters
(Dv/Du and c). When the value of c was increased, the resulting
patterns changed from black spotted to white spotted via the
stripe patterns. Also, the spatial frequency could be controlled
by the value of Dv/Du. That is, one can control the form of
target patterns (spotted or striped) and the spatial resolution
with these two parameters.

Physically, parameter c represents a total balance of activa-
tors u and inhibitors v in the model. When c > 0, v is predom-
inant over u because the values of u must be larger than that
of v + c to ensure f(u− v− c) > 0.5, and vice versa when c < 0.
This can easily be confirmed from Fig. 5 where the area occu-
pied by inhibitors (black areas) is equal to the area occupied
by activators (white) when c = 0, while inhibitors (black areas)
become predominant as c increases.
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Fig. 5. Pattern diagram for proposed RD model.

III. Summary and Discussion

A novel reaction-diffusion (RD) cellular-automaton model
that generates Turing-like spatial patterns was proposed based
on continuous diffusion fields and an analog state variable to
Young’s local activator-inhibitor model [4]. The model em-
ployed linear diffusion fields of activators and inhibitors and
a discrete transition rule after diffusion. Theoretical analysis of
the one dimensional model proved that i) spatial distribution
given by a periodic square function is stable at the equilibrium
and ii) the spatial frequency is inversely proportional to the
square root of a diffusion coefficient of the inhibitors.

What is a RD processor? A traditional RD processor is a real
‘liquid’ medium, usually composed of a thin layer of solution or
gel containing chemical reagents, that in its space-time dynam-
ics transforms data to results in a sensible and programmable
way. Data, to be processed, can be represented by the con-
centration of certain reagents and spatial structures, e.g., diffu-
sive or excitation waves, spread from these initial data points.
The spreading patterns interact to produce either stationary
structures, e.g., a precipitate concentration profile, or dissipa-
tive structures, e.g., oscillating patterns. The final state, or even
just a particular spatial state of the whole medium, represents
a result of the RD computation.

Recently, a great deal of attention has been paid to the study
of the computational properties of spatially extended chemical
systems. To date, it has been proved experimentally that RD
chemical processors are capable of computing shortest paths,
image processing, computational geometry, pattern recognition
and logical computation. In the last ten years enough results
have been obtained to demonstrate that RD chemical processors
are not simply curiosities invented by theoreticians but promis-
ing — and somewhat revolutionary — computing architectures
offering an alternative to the as yet unchallenged domination of
the current silicon designs. This is because spatially extended
RD processors are equivalent to massively parallel computers.

A two-dimensional RD processor, implemented in a thin-
layer liquid phase in a Petri dish, consists of millions of micro-
volumes, nearly 1019. The concentrations of reactants in each
micro-volume are changed in parallel depending on reagent con-
centrations in neighbouring micro-volumes. Therefore, a thin

layer of a chemical medium could be seen as an (ir)regular ar-
ray of elementary few-bit processors. The great number of ele-
mentary processing units makes chemical computers tolerant to
impurities of RD media while local connectivity allows for local-
isation of spatial inhomogeneities in the reacting medium. The
‘amorphous’ structure of the chemical medium guarantees that
a massively parallel chemical processor will self-reconfigure and
restore its original architecture after some parts of the physical
processing medium are removed.
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