エラー補償アーキテクチャを応用した単電子スパイクニューロン回路

大矢 剛嗣[†] Alexandre SCHMID[‡] 浅井 哲也[†] Yusuf LEBLEBICI[‡] 雨宮 好仁[†]

+北海道大学 大学院情報科学研究科

〒060-0814 札幌市北区北 14 条西 9 丁目

[‡] Microelectronic Systems Laboratory, Swiss Federal Institute of Technology (EPFL)

Lausanne, CH-1015 Switzerland

E-mail: oya@sapiens-ei.eng.hokudai.ac.jp

あらまし本研究では、単電子回路による抑制性 競合ニューラルネットワークの構成について提案する。近年の 単電子回路をはじめとするナノデバイスの研究・開発にはめざましいものがある。しかし、その発展に伴いデバイ スエラー対策や各種ノイズ対策が問題となっている。そこで、本稿ではこの問題を打開するものとして二種類の手 法を単電子回路に取り入れた。一つはニューラルネットワークを構成することであり、もう一つはエラー補償アー キテクチャの導入である。コンピューターシミュレーションにより、ニューロン回路、ネットワークの動作をそれ ぞれ確認したのでその結果を示す。シミュレーション結果は、提案回路がデバイスエラーや各種ノイズに対して冗 長性があることを示している。

キーワード スパイクニューロン回路,競合ネットワーク,単電子回路,エラー補償アーキテクチャ

Spiking Neuron Circuit Using Singe-Electron Tunneling Device with Fault-Tolerant Architecture

Takahide OYA[†] Alexandre SCHMID[‡] Tetsuya ASAI[†] Yusuf LEBLEBICI[‡] Yoshihito AMEMIYA[†]

 † Graduate School of Information Science and Technology, Hokkaido University Kita 14, Nishi 9, Kita-ku, Sapporo, 060-0814 Japan
‡ Microelectronic Systems Laboratory, Swiss Federal Institute of Technology (EPFL) Lausanne, CH-1015 Switzerland

E-mail: oya@sapiens-ei.eng.hokudai.ac.jp

Abstract In this report, we present an inhibitory spiking neural network that uses single-electron circuit devices. Recently, the study of various nanodevices such like single-electron devices is developed furthermore. The device failure or signal noise, however, will be problems, when the nanodevices are fabricated. To solve these problems, we constructed the inhibitory competitive network that consists of a single-electron circuit with the fault-tolerant architecture. We confirmed the operations of the proposed circuits by using computer simulation. These simulation results show the proposed circuit promises to overcome the device failure or the signal noise.

Keyword Spiking Neuron Circuit, Inhibitory Competitive Network, Single-Electron Circuit, Fault-Tolerant Architecture

1. はじめに

近年、ナノエレクトロニクスの分野においてニュー ラルネットワークを模擬したシステムの開発が注目さ れている。この分野では、単電子デバイスをはじめと する量子デバイスの開発が盛んに行われており、すで に数多くの回路が提案されている。量子デバイスとは 各種の量子効果(例えば、単電子回路におけるクーロ ンプロッケード効果)を積極的に利用するデバイスの ことである。しかし、量子デバイスはその構造が非常 に微細なものになるため、バックチャージや断線など のデバイスエラー、入力信号や外部からの各種雑音に 関する対策や検討を必要とする。冗長性を持つニュー ラルネットワークとして、ここでは Winner-take-all (WTA)および Winners-share-all(WSA)の解を持つ抑制 型ニューラルネットワークに着目する。特に複数の「勝 者」を持つ WSA 解の性質を生かしたニューラルネッ トワークの冗長性に着目する[1]。実際のニューロン単 体は非常にノイズに弱い。しかし、いくつものニュー ロンが集まりネットワークを構成すると全体としてノ イズに強い動作を示す。したがって、単位素子がノイ ズやエラーに弱い量子デバイスであっても、ニューラ ルネットワークをつくることで問題の改善が見込める。 一方、量子デバイスとしてなんらかのネットワークを つくるとき、ネットワークを構成する単位素子につい てもエラーやノイズに関して検討を行うことが望まし い。近年、回路に冗長性を持たせることによりエラー やノイズの問題を改善するというアーキテクチャ(エ ラー補償アーキテクチャ)が提案されている[2]。した がって、ネットワークを構成する各素子に冗長性を持 たせても、上述の問題改善が見込めると考える。

そこで本稿では、エラー補償アーキテクチャを導入 した単電子ニューロン回路についてエラーに対する冗 長性の検討を行う。また、競合ネットワークを単電子 回路で構成し、エラーに対する冗長性を検討する。最 後に、この2つを組み合わせ、エラー補償ニューロン による競合ネットワークについて検討を行う。ニュー ロン、ネットワークの各シミュレーション結果より、 提案する回路がデバイスエラーなどに対して冗長性を もつことを示す。

2. スパイクニューロンの回路化

この章では単電子回路によるスパイクニューロン 回路の構成方法について述べる。

2.1. 単電子振動子

スパイクニューロン回路を構成するために、本稿で は単電子振動子を導入する。この振動子は、量子ドッ トを中心として、ドットとグラウンド間にトンネル接 合(C_i)を、ドットとバイアス電圧 V_{dd} 間に高抵抗(R_i)を 直列に連結した構造である(図1(a))。この単電子振動 子は、極低温下でクーロンブロッケード効果によりド ット電位が振動する [3]。動作の例を図 1(b)に示し、 その仕組みについて以下に示す。この振動子はあるし きい値を持つ。ここでしきい値とは、その値を越える と単電子のトンネル事象が発生する値をいう。ドット の電位はバイアス電圧により決まる。図 1(b)において、 バイアス電圧をしきい値以下になるように設定する。 すると、外部からの入力がなければドットの電位は安 定する(休止状態)。次に、休止状態で十分な大きさの 入力信号(電位パルスなど)が与えると、ドットの電 位がしきい値を越える。すると、ある待ち時間を経て グラウンドからドットにトンネル接合を通して電子が トンネルする。ドットの電位は、ドットに電子がトン ネルすると同時に正から負に転じる(興奮状態)。本稿 では、ドット電位の急激な変化をニューロンのスパイ ク信号と考える。ドットの電位が負に転じると、ドッ

図 1 単電子振動子;(a)回路構成,(b)回路の挙動(シミ ュレーション)

図 2 単電子振動子の連結; (a)連結の例, (b)信号伝播

トとバイアス電源の間に電位差が生じる。このため、 バイアス電圧と高抵抗により容量(トンネル接合)の充 電が行われる(不応状態)。最終的には充電の効果でド ット電位は元の安定状態に戻る。

後述のスパイクニューロン回路を構成するために、 この振動子を連結する。その連結の仕方を以下に述べ る。本稿では、振動子間の連結としてキャパシタ(C) を用いる(図2(a))。ここで、スパイク信号を連結振動 子に伝えるため、振動子のバイアス電圧は隣り合う振 動子間で逆になるように設定する。このようにするこ とで、スパイクは(たとえば1次元配列された鎖状の) 振動子を伝わることが可能となる。図 2(b)では、図 2(a) のような正バイアスの振動子と負バイアスの振動子が それぞれ1個の場合のシミュレーション結果である。 ここで、図 2(a)中の振動子 A に外部入力を与えるとす る。すると、前述のようにドット電位がしきい値を越 えることによりトンネル事象が発生、電位変化が起こ る。この電位変化は結合キャパシタにより、隣の振動 子Bに伝わる。この電位変化は振動子Bにとってトン ネル事象を誘発するトリガとなる。したがって、振動 子Bにおいても、トンネル事象が発生し電位変化が生 じる。複数個の振動子が連結された場合においても同 様の現象が次々に起こる。これにより、トンネル事象 (スパイク)が後段の振動子に伝搬する。

図 3 単電子スパイクニューロン回路

2.2. 単電子スパイクニューロン回路

本稿で用いる単電子スパイクニューロン回路を図 3 に示す。先に述べた単電子振動子(単体)において、 入出力端子は共通である。したがって、ニューロン回 路の構成において入力と出力を区別するような機構が 必要となる。本稿では、入出力を区別するために五個 の単電子振動子を用いて構成する。振動子1は外部入 力を受ける素子、振動子 2,3,4 はバッファ、振動子 5 は他のニューロンへと信号を出力する素子である。こ こで V_{dd} は上述の通り、スパイク信号伝搬のため隣り 合う振動子と極性が逆になるように設定する。スパイ ク信号の進む向きを一方向にするために、振動子5は 発火するのに必要な入力スパイク数が三個となるよう にバイアス電圧を $V_{\rm L}$ とする。この $V_{\rm L}$ は $V_{\rm dd}$ よりも小 さいバイアス電圧とする。これにより、その振動子で はしきい値が高くなる。したがってスパイクの発生に 複数個の入力信号が必要となる。このニューロン回路 の挙動を以下に示す。入力信号が振動子1に与えられ るとスパイク(電子トンネル)が発生する。振動子 1 で発生したスパイクは、振動子 2,3,4 にそれぞれ伝わ る。これにより振動子 2.3.4 においてそれぞれスパイ クが発生し振動子 5 に伝わる。振動子 5 は 2,3,4 から の三入力を受けることによりスパイクを発生し信号を 出力する。なお、振動子5は外部への出力端子が一本 なので、出力端子側に意図しないスパイクが発生して も、そのスパイクは振動子5でブロックされ、逆向き にはスパイクが伝搬しない[4]。

3. 冗長性を持つ回路の構成

この章では、デバイスエラーに冗長な単電子スパイ クニューロン回路の構成を議論する。3.1 節ではエラ ー補償アーキテクチャに基づく単電子スパイクニュー ロン回路について議論し、3.2 節では単電子スパイク ニューロン回路を用いた競合ネットワークの構成につ いて議論する。また 3.3 節ではこれら二つを合わせた、 ネットワーク回路について議論する。

図 4 エラー補償アーキテクチャ[2]

図 5 平均化セルとその動作式

3.1. エラー補償アーキテクチャの適用

この節では、単電子スパイクニューロン回路にエラ ー補償アーキテクチャを導入することを検討する。

3.1.1. エラー補償アーキテクチャ[2]

エラー補償アーキテクチャは、近年研究・開発が進 んでいる微小 CMOS の LSI や、単電子トランジスタと いったナノスケールのデバイスを対象として提案され ている。図4に示すとおり、このアーキテクチャは四 つの階層からなり、情報処理はフィードフォワードで 行われる。第一層は入力の階層である。この階層は外 部入力を後述の第二層にある各セルにそれぞれ供給す る。第二層は論理演算を行う階層であり、このアーキ テクチャにおける動作の核になっている。この階層に は、同一のブール代数論理演算を行うセルを複数個用 意する。また各セルへの入力は第一層から等しく同じ タイミングで行われるものとする。このように、論理 演算セルを複数個用意することによりデバイスエラー に対する冗長性が生まれる。また、この冗長性は第二 層に含まれるセルの数が多いほど増加する。冗長性が 生まれる理由は、各セルからの出力信号と、それを受 ける後述の平均化セル(第三層)としきい値決定セル (第四層)の動作による。第三層には平均化の動作を行 うセルを用意する(図 5)。このセルは第二層からの出力 信号を受け、図5中右の式に従い信号の平均化を行う。 図 5 の式において、x_iは第二層からの入力信号、k_iは 重み係数、V_{fs}は適当な値の電位を示す。 第四層にはし きい判定のセルを用意する。このセルは第三層からの 平均化された電位信号を受け、しきい判定を行い、最 終的に論理1か0を決定し出力する。ここでしきい値

図7 エラー補償ニューロン回路の特性

は外部から適切な値を設定する。

ーロン回路の構成

ここで、第二層において、なんらかのデバイスエラ - (断線やバックグラウンドチャージなど)がいくつ かの素子で発生したとする。すると、いくつかの論理 演算セルにおいて出力信号が正しい値ではなくなる。 (つまり、例えば論理1を出力しなければならないの に論理0、または不定を出力してしまうということ。) このような状況で、第三層は第二層の各セルから出力 信号を受け平均を取る。正しい出力が1である場合、 第三層では正しい信号とエラー信号を受け平均化する ため、その出力は必ずしも1ではない。第四層では第 三層からの信号を受け、適当なしきい値より最終的な 論理出力を1か0に決定する。これによりデバイスエ ラーに冗長な動作を回路全体として行うことができる。

3.1.2. エラー補償を適用した単電子スパイクニ ューロン回路

本稿で提案するエラー補償を適用した単電子スパ イクニューロン回路を図6に示す。このニューロン回 路は先に述べたエラー補償アーキテクチャに基にして 三層構造の回路として構成する。第一層は入力の階層 であり、入力信号を受け第二層の回路に信号を伝える。 ここで、入力信号は周期的なスパイク信号を用いる。 第二層には複数個の論理演算素子の代わりに複数個の スパイクニューロン回路を用意する。この階層で各ニ ューロン回路は第一層から入力を受け、それぞれ同じ タイミングでスパイクを発生する。第三層は平均化・ しきい判定の階層である。これは先に述べたエラー補 償アーキテクチャの第三層と第四層で行われる動作一 つの回路で実行することを意味する。本稿では第三層 の回路として一つの単電子振動子を用いた。なお、こ の単電子振動子のバイアス電圧は-V_Bとする。この振 幅の大きさは V_{dd}よりも小さく設定する。

3.1.3. シミュレーション結果

エラー補償ニューロン回路の動作シミュレーショ ンを行った。その結果を図7に示す。本稿ではモンテ カルロ法に基づく単電子回路のシミュレーション方法 を用いる(詳細は文献[5]の Appendix を参照)。図7に おいて、Rとは第二層におけるスパイクニューロン回 路の数を示す。縦軸は入力信号を受け正しく信号を出 力する割合であり、横軸はニューロン回路内に含まれ る素子全体に対してデバイスエラーがある素子の割合 を示す。ここで、デバイスエラーは第二層のスパイク ニューロン回路にだけ存在するものとした。図7では エラー補償を施さなかったニューロン回路(original spiking neuron; 図1の構成)とRを5,7,9としてシミ ュレーションした結果を集計し比較した。シミュレー ションの結果から、次のことが言える。エラー補償な しのニューロン回路は、エラーの割合が増すほど線形 的に信頼性が低下する。それに対し、エラー補償を施 したニューロン回路ではエラーの割合が増加しても正 しく動作する。つまり、デバイスエラーに冗長といえ る。この冗長性は、R の値が大きいほど強くなる傾向 がある。

3.2. 競合ネットワークの構成

この節では、図1の構成のニューロン回路を用いて 構成する競合ネットワークについて議論する。

3.2.1. WSA 型単電子ニューラルネットワーク

単電子ニューロン回路を用いて WSA 型ネットワー クを構成する。WTA 解をもつ競合ネットワークでは、 「勝者」となるニューロンはただ一つである。ここで は、WSA 解をもつ競合ネットワークを構成する。個の ネットワークでは、「勝者」のニューロンは複数個存在 する。図 8 に WSA 型単電子ニューラルネットワーク の構成を示す。これは、図1の回路に出力用の回路を 追加し、それを複数個配列することでネットワークを つくる。ここで、出力用の回路には図1の構成の回路

図 8 単電子スパイクニューロンによる競合ネットワ ークの構成

を二つ用意した。各ニューロンに接続されている出力 回路と各ニューロンはシナプス結合として高抵抗を用 いる。また、ニューロン回路内にある正バイアスの振 動子は出力回路の正バイアスの振動子と高抵抗(R_d)を 通して接続する。同様に、ニューロン回路内にある負 バイアスの振動子は出力回路の負バイアスの振動子と R_dを通して接続する。このネットワークで R_dは抑制 性シナプスのはたらきをする。抵抗接続が抑制性のシ ナプスとしてはたらく仕組みを以下に示す。はじめに、 ニューロン回路は入力信号を受け、出力側にスパイク を伝える。ニューロン回路から出力された信号は、出 力回路に伝搬し最終的には R_dが接続された最終段の 振動子に到達する。すると、その振動子ではスパイク (電子トンネル)が発生し、ドットの電位が反転する。 R_dで接続された振動子はスパイクがない状態で同じ 極性のドット電位を持つ。したがって、一方でスパイ クが発生し電位が変化すると R_dの両端に電位差が生 まれる。このため生じた電位差によってニューロン内 の振動子と出力回路の振動子との間で電流が流れる。 出力回路とニューロンとの間で電流が流れると、ニュ ーロン内の振動子は電子トンネルに必要な電荷が奪わ れる。つまり、その振動子では電子トンネルが発生し にくい状態となる。つまり、ニューロンが抑制される。

3.2.2. シミュレーション結果

前節で述べたネットワークについて動作シミュレ ーションを行った。そこから得た結果から集計したデ

error	評価関数 <i>I</i>		
rate	M = 10	M = 20	M = 30
0	0.68	0.76	0.74
0.1	0.63	0.51	0.57
0.2	0.54	0.53	0.62

図 9 エラー補償ニューロンによる競合ネットワーク

ータを表1に示す。このネットワークをWSA型[1]の ネットワークとするため、ニューロンのクラスタを構 成しそれぞれに入力を与えた。ここでクラスタはニュ ーロン数 M = 10, 20, 30 個で構成し、それぞれについ てエラーレートを 0,0.1,0.2 としてシミュレーショ ンを行った。入力は周期的なスパイク信号である。「勝 者」のニューロンクラスタには 10.01 MHz の周期で、 また「敗者」のニューロンクラスタには 10.01 MHz の周期 でスパイクを入力する。表1において、M はクラスタ のニューロン数、I は評価関数を表す。ここで評価関 数とはそのネットワークで「勝者」と「敗者」の差が どれくらいかを表すものである。ここで評価関数 I を 次の式で与える。

$$I = \frac{f_W}{f_W + f_L}$$

ここで、f_wは「勝者」の平均発火周波数であり、f_Lは 「敗者」の平均発火周波数である。この式から求まる 値が1に近いほど、WSAの度合いが強いといえる。表 1より、エラーレートが0のときクラスタのニューロ ン数 M が増加すると I の値が増加することがわかる。 この結果から、WSA 型のネットワークを構成はクラス タのニューロン数を大きくすれば WSA としてのパフ ォーマンスは増加することがわかる。エラーが存在す る場合、パフォーマンスの向上があまりない。これは 単電子回路のもつ確率性などが表れた結果と考える。

3.3. エラー補償ニューロンを用いた WSA ネットワー ク

3.1 節と 3.2 節の結果から、エラー補償ニューロンを 用いて WSA ネットワークを構成する。その構成を図 9 に示す。これは図8のネットワーク構成で用いた単電 子ニューロン回路をエラー補償が施されたニューロン 回路に置き換えたものである。このネットワークに関 して、動作シミュレーションを行った。シミュレーシ ョン結果から集計したデータを表 2,3 に示す。表 2 はエラーレートが0,0.1,0.2、クラスタのニューロン 数 M=10、エラー補償ニューロン内のスパイクニュー ロン数 R=5 の時のデータである。エラーレートが 0 の時「勝者」の平均発火周波数が約 8.55 MHz となって いるのに対して、「敗者」の平均発火周波数が 2.37 MHz となっていることから、このネットワークも前節同様 に競合ネットワークとして動作したといえる。また、 エラーレートが上昇すると「敗者」の出力周波数が増加 するが、それでもなお競合ネットワークとして動作す ることがわかる。表3は、クラスタ数 M における評価 関数 / の比較である。表 3 から、このネットワークで はクラスタの大きさが大きいほど、パフォーマンスが よいといえる。

4. まとめ

本稿では、次世代電子デバイスの候補である単電子 回路におけるデバイスエラーや各種ノイズの問題を解 消する方法として、WSA 型ニューラルネットワークの 構成とエラー補償アーキテクチャの導入という二つの アプローチと、それらを組み合わせることについて提 案した。エラー補償アーキテクチャは、微細 CMOS や ナノデバイスでつくるディジタル回路向けのアーキテ クチャである。このアーキテクチャの導入により、バ ックグラウンドチャージなどのデバイスエラーに対し て回路は冗長性を持つ。本稿では、このアーキテクチ ャをスパイクニューロン回路の構成に応用した。スパ イクニューロン回路は単電子振動子回路で構成する。 エラー補償を施すニューロン回路の構成は、入力部、 スパイクニューロン回路の部、平均化・しきい判定部 の三層構造である。スパイクニューロン回路の部では、 同じ構成の単電子スパイクニューロンが複数個存在し、 これにより各種エラーに対して冗長性を持つ。また、 単電子スパイクニューロンを用いて競合ネットワーク を構成した。この競合ネットワークは、WSA 型のネッ トワークであり、「勝者」のニューロンクラスタと「敗 者」のニューロンクラスタから成る。「勝者」は入力され

error	Winner Ø	Loser Ø	7
rate	平均発火周波数	平均発火周波数	1
0	8.55 (MHz)	2.37	0.78
0.1	11.17	4.12	0.73
0.2	10.78	6.34	0.63

 表 2 各エラーレートにおける半均周波数の比較 (R = 5, M = 10)

М	Ι	
10	0.78	
20	0.85	
30	0.86	

表 3 クラスタのニューロン数 M における評価関数の 比較(error rate = 0, R = 5)

た信号の周波数に近い値の発火周波数を出力として示 す。一方、「敗者」は抑制の効果で出力の発火周波数は かなり低いものとなる。WSAの効果が大きいほどこの 傾向は強くなる。本稿ではシミュレーションにより、 クラスタのニューロン数が多いほど、WSAの効果が大 きくなることを確認した。このニューロン回路の検討 とネットワークの検討をふまえ、二つを組み合わせた ものについても検討を行った。シミュレーション結果 から、エラー補償アーキテクチャの導入と、競合ネッ トワークの導入によりデバイスエラーに対する冗長性 が得られると考える。

今後の検討課題として、熱雑音に関する問題があげ られる。本稿ではデバイスエラーに関することを検討 した。量子デバイスの開発において、デバイスエラー と同様に熱雑音に関する検討も必要となる。現在熱雑 音に関しては、本稿で提案したエラー補償アーキテク チャの導入や WSA 型ネットワークの構成を基に、熱 雑音に冗長な単電子回路が構成できるか調査中である。

文 献

- [1] T. Asai, M. Ohtani and H. Yonezu, "Analog integrated circuits for the Lotka-Volterra competitive neural networks," IEEE Trans. Neural Networks, Vol. 10, No. 5, pp. 1222–1231, 1999.
- [2] A. Schmid and Y. Leblebici, "Robust Circuit and System Design Methodologies for Nanometer-Scale Devices and Single-Electron Transistors,"Proc. IEEE-NANO03, Vol. 2, pp.516–519, 2003.
- [3] T. Oya, T. Asai, T. Fukui, and Y. Amemiya, "Reaction-Diffusion Systems Consisting of Single-Electron Oscillators," International Journal of Unconventional Computing, in press.
- [4] 加賀谷 亮,大矢 剛嗣,浅井 哲也,廣瀬 哲也, 雨宮 好仁,"単電子スパイクニューロンによる 抑制性相互結合ニューラルネットの温度特性," 日本神経回路学会第十四回全国大会,P1-26,pp. 76-77, Sept. 2004.
- [5] T. Yamada, M. Akazawa, T. Asai, and Y. Amemiya, "Boltzmann machine neural network devices using single-electron tunneling," Nanotechnology, Vol. 12, No. 1, pp. 60–67, 2001.