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Abstract 素子バラツキを含んだ階層型ニューラルネットワークにおける新しいタイプの確率共鳴
現象について報告する。このニューラルネットワークは、ランダムな固定バラツキを持つ入力層、ダ
イナミック雑音を受ける中間層、および出力層の三層からなり、古典的なしきい系の確率共鳴モデ
ルを空間的に重ね合わせたものに相当する（中間層のニューロンを近接する確率共鳴構造が共有す
る）。この重ね合わせの度合いを「ニューロンの受容野の大きさ」と考える。このネットワークに微
弱な入力信号（中間層ニューロンのしきい値以下の入力）を与えた場合、入出力間の相関値が、中間
層に加わる雑音の大きさ（>0）のみならず、受容野の大きさ（>0）に対しても最適値を持つことが
わかった。

1 Introduction

Stochastic resonance (SR) has recently been spotlighted
in the field of engineering, which is motivated by a wide
variety of sensing applications to detect weak signals [1].
Recent challenges in electrical engineering revealed that
SR could be observed in a laser [2, 3, 4], nonlinear elec-
trical circuits [5, 6, 7], sigma-delta modulators [8], quan-
tum circuits [9, 10, 11], and so on. Noise and fluctuations
are usually considered as “obstacles” in electrical systems,
and most strategies to deal with them are focused on the
suppression. In contrast, SR in electrical systems certainly
exploited noises to improve the SNR, which implies that a
new kind of electrical systems would be evolved by utiliz-
ing noise and fluctuations (e.g., [12, 13, 14]).

Recently, Funke et al. reported that a visual pathway in a
cat primary visual cortex optimally utilized an SR-like pro-
cess to improve signal detection while preventing spurious
noise-induced activity and keeping the SNR high [15]. Al-
though the mechanism is still unclear, one may assume that
i) SR without optimal tuning of noise intensities [16] un-
derlies the fundamental mechanism and ii) the visual path-
way from photoreceptors to cortical neurons may cause ex-
tremely large receptive fields (RFs). Inspired by these re-
sults and assumptions, we here propose a simple neural
network model that consists of an array of SR units where
threshold elements are represented by McCulloch-Pitts (MP)
neurons and the MP neurons are shared by the neighboring
SR units, i.e., the number of MP neurons in each SR unit
represents the RF size. Our primary interest here is to in-
vestigate the model’s fundamental behaviors as a function
of the noise intensity, the RF size, and population hetero-
geneity (random offsets between the inputs) that was not
discussed in [15].

2 Brief Review of SR Models

Figure 1 shows a basic SR model proposed in [16]. A
subthreshold input is commonly given to N threshold el-
ements, as illustrated in Fig. 1(a). FitzHugh-Nagumo neu-
rons were used in the original paper, but one may use McCu-
lloch-Pitts (MP) type neurons instead without loss of gen-
erality. Each neuron accepts external uncorrelated noises,
which lead the neurons to fire with high (or low) possibil-
ity when the subthreshold input is high (or low). When
the outputs were summed, the uncorrelated noises tend to
be cancelled each other as N increases. Examples with MP
type neurons were shown in Fig. 1(b) where correlation val-
ues between the input and output signals were plotted as a
function of the noise intensity. One can observe that the
correlation values are increased as N increases and the val-
ues tend to be insensitive to noise intensity (> 0.2 when
N = 100). This means, when a large number of neurons
are used in the system, the subthreshold (weak) input can be
detected without optimal tuning of the noise intensity [16].

The concept of SR has been expanded to image sensing
applications [17]. Let us consider a 2-D array of pixels, and
assume that each pixel consists of the same SR model in
Fig. 1(a). The array accepts dark (subthreshold) images,
and thus the array’s output would be always zero when
external noises were not given. As the noise intensity in-
creases, nonzero outputs appeared, as shown in Figs. 2(a)
to (c). When each pixel has random offset values, they
are directly detected through the SR process, as shown in
Figs. 2(d) to (f). Consequently, SR would be useful for
sensing weak signals (e.g., dark images), however, the ran-
dom offsets would also be detected in practical systems.
Note that such a random offset is generally observed in
photodiodes as dark currents, and the dark currents are can-
celled by correlated double sampling (CDS) circuits in many
CMOS image sensors [18]. Here we do not argue that SR
may defeat CDS, but are interested in SR-based image pro-
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Figure 1: Stochastic resonance (SR) without optimal tuning
of noise intensity [16]

cessing that may exist in biological vision systems.

3 Neural Networks with Locally-Coupled SR
Units

We here propose a simple neural network model for SR-
based image processing. Our model accepts images (optical
inputs), and generates the outputs through an SR process, as
demonstrated in Fig. 2. Three types of array structures of
SR units are considered, as shown in Fig. 3. The first struc-
ture is illustrated in Fig. 3(a) where an optical input to a
pixel is given to a single noisy MP neuron. Each neuron
accepts temporal noises, and the temporal average of the
neuron’s output represents the pixel output. With this setup,
the maximum correlation values between the input and the
output would be low because the single pixel exactly cor-
responds to the network of N = 1 in Fig. 1. To increase
the correlation value, one can employ the second structure
where multiple MP neurons are embedded in each pixel
(N = 3 for example), as shown in Fig. 3(b). This setup cer-
tainly increases the correlation values, and the model would
exhibit the best (but trivial) results with large N . Our inter-
est here is to introduce receptive fields (RFs) in an array of
SR units where MP neurons are shared by the neighboring
SR units, as shown in Fig. 3(c). It should be noticed that

(I) without variance

(II) with variance

(a) weak noises (b) moderate noises (c) strong noises

(d) weak noises (e) moderate noises (f) strong noises

Figure 2: 2-D examples of weak-signal (dark-image) sens-
ing with SR.

an SR unit with N = 3 is hidden in this structure (illus-
trated by solid lines and circles in Fig. 3(c) left), and the
MP neurons are shared by the neighboring SR units.

In Fig. 3(c), the optical input distribution is represented
by I(x), and is accepted by nominal photoreceptors. The
output distribution of the photoreceptors is defined by I(x)+
δ(x) where δ(x) represents the spatial random noise (pixel
variations) given by m · N(0, 1) [N(0, 1) is the Gaussian
noise with zero mean and unity standard deviation]. Inputs
to MP neurons via local coupling connections between pho-
toreceptors and MP neurons were then defined by

R(x) =
∫ (

I(X) + δ(X)
) · g(X − x) dX, (1)

g(x) =
1√
2πσ

exp
[
− x2

2σ2

]
,

where σ represents the RF size. The output distribution of
the MP neurons is thus

V (x) = H
(
R(x) − ξ(t)

)
, (2)

where H(·) represents a step function, and ξ(t) the tempo-
ral random noise given by A · N(0, 1) + θ (A: standard
deviation, θ: mean threshold). The final output via local
coupling connections between the MP neurons and the out-
put cells is given by

O(x) =
∫

V (X) · g(X − x) dX. (3)

With this model, we examine SR behaviors by changing
m (spatial randomness), σ (RF size), and A (temporal ran-
domness being necessary for SR).

4 Results

We conducted numerical simulations to investigate ef-
fects of RF sizes and noises (random offsets in photorecep-
tors and temporal noises in MP neurons). In the following
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Figure 3: Three types of SR models. (a) SR array with
N = 1, (b) N = 3 and (c) proposed SR array having local
connections where one pixel with N = 3 shown in (b) is
hidden (solid lines and circles).

simulations, we assume θ = 0.5 and I(x) = 0.3 · H(x −
0.5). The 1-D space (x : [0, 1]) is discretized with 32 MP
neurons (N = 32) where dx ≡ 1/N and x = i ·dx (i: inte-
ger value). Figure 4 (top) shows density plots of correlation
values between the optical input I(x) and final output O(x)
as a function of σ and A with four different values of ms.
The output O(x) was obtained by averaging results of 512
trials with different random seeds. The correlation values
were calculated by

C ≡
∑N

i=1[I(i · dx) − 〈I〉] · [O(i · dx) − 〈O〉]√∑N
i=1[I(i · dx) − 〈I〉]2

√∑N
i=1[O(i · dx) − 〈O〉]2

,

(4)
where 〈I〉 and 〈O〉 represent the spatially averaged distri-
butions of I(x) and O(x) (〈I〉 is 0.15, and 〈O〉 was nu-
merically calculated from O(x)). Figure 4 (bottom) shows
distributions of I(x), O(x), and random threshold ξ(t) at
arbitrary t. If photoreceptors are identical (m = 0, Fig.
4(a)), the maximum correlation value was obtained when
the RF size (σ) was zero, as expected. However, if photore-
ceptors are not identical (m = 0.1, Fig. 4(b)), the correla-
tion peak was moved to nonzero σ while keeping the peak
value high. This implies that a nonzero RF size would be
necessary for SR among nonidentical components. As m

increases (Fig. 4(c) and (d)), the peak shifted to higher σ,
however, the peak values were decayed slowly.

Figure 5 shows horizontal cross sections of Fig. 4(b). As
in the basic SR network (Fig. 1), the correlation values had
a peak for variable noise intensity (A). It should be no-
ticed that the correlation values did not decrease suddenly
as noise intensity A increased. When σ = 1.5, for example,
the peak value was almost insensitive within 0.2 < A <
0.5. Since σ qualitatively represents the number of neu-
rons in the RF of each pixel, increasing σ may improve the
correlation as in the basic SR network. However, nonzero
σ causes smoothing of the optical input. Therefore there
may exist upper bounds of σ. Figure 6 shows the vertical
cross sections of Fig. 4(b) representing correlation values
as a function of σ. The peak value was obtained around
σ ≈ 1.5 and A = 0.4, which proves that nonzero σ (RF
size) is necessary for obtaining higher correlation values in
this SR system with nonidentical pixels (m > 0).

To confirm the effects of convergent coupling connec-
tions between V (x) and O(x) in our SR model, we calcu-
lated peak correlation values between I(x) and O(x) (CIO)
as well as correlation values between I(x) and V (x) (CIV ).
Figure 7 plots the peak values as a function of spatial vari-
ance m (I(x) = 0.1 · H(x − 0.5)). For given m, the
peak values were scanned by sweeping two parameters A
(noise intensity) and σ (RF size). We observed an apparent
difference between CIO and CIV , where CIO was always
larger than CIV , and the difference expanded significantly
as m increased. This result proves that employing the cou-
pling connections between V (x) and O(x) is effective for
increasing the correlation values, which results in improv-
ing quality of detected images.

Finally, we evaluated performances of a 2-D network with
two distinct RF sizes (σ = 0.3, 1.5). Figure 8 shows the
results (A = 0.4, m = 0.1, and θ = 0.5). The binary
input image I(x, y) is shown in Fig. 8(a) [32×32-pixels
black and white image. I(x, y) = 0 (black) and 0.3 (white)],
whereas level-adjusted density plots of outputs of neurons
V (x, y) [(b) and (c)] and final output cells O(x, y) [(d) and
(e)] with different RF sizes are shown. By comparing the
final outputs of small RF (σ = 0.3) and relatively large RF
(σ = 1.5), we first conclude that expanding RF sizes is use-
ful for obtaining visually-better output image through SR
among nonidentical pixels, if the input image is not com-
plex (realistic). The important thing here is that the under-
lying mechanism of the performance increase mainly re-
sulted from convergence on O(x, y) with nonzero σ (=1.5),
as proved in Fig. 7.

Figure 9 shows simulation results for realistic gray-scale
input images. Figure 9(a) represents the input image [256
× 256-pixels 8-bit gray-scale image. I(x, y)s were renor-
malized to 0 (black-most pixel) and 0.3 (white-most pixel)].
When σ = 0.3, the output image detected by SR was very
noisy (Fig. 9(b)), which represents a raw image including
random offsets detected by SR. Figures 9(c) and (d) show
level-adjusted distributions of V (x, y) and O(x, y), respec-
tively, when σ = 1.5. The difference in image qualities
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Figure 5: Horizontal cross sections of Fig. 4(b).

between Figs. 9(c) and (d) were not apparent at-a-glance
view, however, there is quantitative difference certainly, as
shown in Fig. 7.

We have shown that the maximum correlation value be-
tween input I(x) and output O(x) was obtained by set-
ting optimal noise intensity A and receptive field (RF) size
σ (Fig. 6). Figure 5 showed well-known SR characteris-
tics, where subthreshold inputs I(x) given to MP neurons
were nominally amplified by applying temporal noises to
the neurons. Moreover, a new type of SR was observed in
Fig. 6 where maximum correlation value was obtained at
certain value of RF size σ.

Here let us consider the reason why correlation value is
maximized by non-zero σ. MP neurons receiving tempo-
ral noises may respond to subthreshold inputs if the sum of
the inputs and the noise intensities exceed the threshold val-
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Figure 6: Vertical cross sections of Fig. 4(b).

ues. The response strongly depends on the noise sequences,
i.e., the neuron’s output would be 1-bit temporal random
sequences (time varying sequences of 0 and 1). When out-
put V (x) is averaged over time, the averaged value V con-
verges to static values. If noises were applied to the neurons
with optimal intensity, V converges to the subthreshold in-
put, i.e., V is strongly correlated with the input. Thus, the
output of the MP neuron can be represented by its input.

Our model has two local-coupling layers, as shown in
Fig. 3(c). One layer connects photoreceptors and MP neu-
rons, and another connects the MP neurons and the out-
put cell. Our results showed that these coupling connec-
tions (nonzero σ) were effective for decreasing spatial vari-
ance m in photoreceptors, which resulted in increase of
correlation values between the noiseless input I(x) and the
model’s output O(x). The correlation value was nonmono-
tonically increased as the RF size (σ) increased (Fig. 6).
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(a) input image I(x, y)
(256×256 8-bit gray-scale)

(b) output O(x, y) with small
RF (σ = 0.3)

(c) output V (x, y) with large
RF (σ = 1.5)

(d) output O(x, y) with large
RF (σ = 1.5)

Figure 9: 2-D simulation results using gray-scale images. Grayscale output images (b-d) were obtained by averaging binary
results of 512 trials with different random seeds.
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When m is increased, the correlation values would be de-
creased due to the nonzero σ. It should be noted that if m =
0, the maximum correlation value is certainly 1, however,
the maximum value would be decreased as m increased be-
cause of the mismatches between I(x)+δ and output O(x).

The network shown in Fig. 3(c) with small σ are consid-
ered to have the same characteristic as the conventional SR
network shown in Fig. 3(a). Therefore, time-averaged out-
put O in Fig. 3(c) is equal to the input of the MP neurons
(V ), as described above. Thus, when m > 0, O approaches
to I(x) + δ(x). When m approaches to the signal level of
I(x), the correlation value between input I(x) and output
O(x) (≈ I(x)+δ(x)) would be low values. As σ increases,
the correlation value is also increased because nonzero σ
was effective for decreasing m, as described above. Fur-
ther increase of σ results in the decrease of the correla-
tion value. Remember that input distribution of MP neu-
ron (R(x)) was defined by the convolution of I(x) + δ and
coupling weight function g(x) in Eq. (1). This means that,
with extremely large σ, the spatial variance in R(x) van-
ishes when a uniform I(x) is given. On the other hand, the
correlation value decreases due to the mismatches of I(x)
and extremely smoothed O(x). Consequently, the spatial

input I(x, y)

output of 
M-Pitts  
neurons 
V(x, y)

output of 
final cell 
O(x, y)

(b) σ = 0.3

(d) σ = 0.3

(c) σ = 1.5

(e) σ = 1.5

(a)

Figure 8: 2-D simulation results with test pattern image.
Gray-scale output images (b-e) were obtained by averaging
binary results of 512 trials with different random seeds.

variance m is strongly suppressed by constructing the su-
perimposed structure of SR units.

5 Conclusion

We proposed a simple neural network consisting of locally-
coupled stochastic resonance (SR) units with nonidentical
photoreceptors. Through numerical simulations, we ob-
served a new class of SR among the units when the pho-
toreceptors had random offsets. We calculated correlation
values between the optical inputs and the output as a func-
tion of the receptive-field (RF) size and intensities of the
random components in photoreceptors and the McCulloch-
Pitts neurons. We then showed that there existed nonzero
optimal sizes of the RF as well as optimal noise intensi-
ties of the neurons under the nonidentical photoreceptors.
Furthermore, we demonstrated 2D SR with the proposed
model, and showed that the difference in image qualities be-
tween a simple-smoothing model with SR and smoothing-
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plus-convergent model with shared SR was not apparent at
a glance, although there existed a quantitative difference be-
tween them.
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