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Abstract— We numerically investigated the dynamics of a new
reaction-diffusion-type excitable medium where the diffusion
coefficient is represented by memristive dynamics. This type
of a medium consists of an array of excitable Oregonators,
and each Oregonator is locally coupled with other Oregonators
via memristors, which were claimed to be the fourth circuit
element exhibiting a relationship between flux φ and charge
q. Through extensive numerical simulations, we found that
the memristor conductances were modulated by the excitable
waves and controlled the velocity of the waves, depending on
the memristor’s polarity. Further, different nonuniform spatial
patterns were generated depending on the initial condition of
Oregonator’s state, memristor polarity and stimulation.

I. INTRODUCTION

Semiconductor reaction-diffusion (RD) computing large-
scale integrations (LSIs) implementing RD dynamics have
been proposed in the literature [3]. These LSIs were mostly
designed by digital, analog, or mixed-signal complementary-
metal-oxide-semiconductor (CMOS) circuits of cellular neural
networks (CNNs) or cellular automata (CA). Electrical cell
circuits were designed to implement several CA and CNN
models of RD systems [4], [5], [6], [7], [8], as well as
fundamental RD equations [9], [10], [11], [12]. Each cell is
arranged on a two-dimensional (2-D) square or a hexagonal
grid and is connected to adjacent cells through coupling
devices that transmit the cell’s state to its neighboring cells, as
in conventional CAs. For instance, an analog-digital hybrid RD
chip [5] was designed for emulating a conventional CA model
for Belousov-Zhabotinsky (BZ) reactions [13]. A full-digital
RD processor [6] was also designed on the basis of a multiple-
valued CA model, called excitable lattices [14]. An analog cell
circuit was also designed to be equivalent to spatial-discrete
Turing RD systems [10]. A full-analog RD chip that emulates
BZ reactions has also been designed and fabricated [9].

Blueprints of non-CMOS RD chips have been designed,
for example, a single-electron RD device [15]. The authors
previously proposed an RD device based on minority-carrier
transport in semiconductor devices [16]. The point of our
idea was to simulate chemical diffusion with minority-carrier
diffusion in semiconductors and autocatalytic chemical reac-
tions with carrier multiplication in p-n-p-n negative resistance
diodes. Using CMOS and non-CMOS RD circuits enables us
to simulate a variety of autocatalytic reactions and open up a
variety of application fields for RD devices.

In this study, we attempt to reclaim a new field of semi-
conductor RD LSIs and propose a new RD-based excitable
medium, keeping in mind the hardware implementation. Re-
cently, the so-called “memristors,” originally introduced by
Leon Chua in 1971 [2] and claimed to be the fourth cir-
cuit element exhibiting a relationship between flux φ and
charge q, have again been in the spotlight since Strukov et
al. presented equivalent physical examples [17]. Although
the presented device was a bipolar resistive RAM that did
not “directly” exhibit a relationship between φ and q, the
device behaved as a non-volatile resistor whose resistance
was continuously controlled by the amount of the charge flow
(current). Here, the following question arises: What happens
if one replaces resistors for diffusion in analog RD LSIs with
memristors? This is the primary purpose of this investigation
in this work. Through extensive numerical simulations, we
found that i) the memristor’s conductances were modulated
by excitable waves propagating on the memristor, depending
on the memristor’s polarity; ii) velocity of the excitable wave
propagation is thus modulated by the change of memristor
conductance, and the degree of the modulation is inversely
proportional to the time constant of the memristor’s model, and
iii) different and interesting nonuniform spatial patterns were
generated depending on the initial condition of Oregonator’s
state, memristor polarity and stimulation. In the following
sections, we introduce an excitable RD model with memristors
and show the spatiotemporal behaviors of 1-D and 2-D RD
models through extensive numerical simulations.

II. THE MODEL

A general model of memristors is explained in terms of
memristance M(q) [2]; however, we here use a comprehensive
model represented by

i = g(w)v,
dw

dt
= i (1)

where v represents the voltage across the memristor; i, the
current of the memristor; w, the nominal internal state of
the memristor and corresponds to the charge flow of the
memristor, and g(w), the monotonically increasing function
with increasing w [17]. This model implies that positive (or
negative) i (current flow) increases (or decreases) w, which
results in an increase (or decrease) in the memristor conduc-
tance g(w). Figure 1 illustrates these aspects of memristors,
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Fig. 1. Memristor symbols and polarity definition
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Fig. 2. Electrical representation of RD system whose diffusive resistors are
replaced with memristors

where ∆g corresponds to dw/dt and hence dg(w)/dt. In what
follows, we integrate these dynamics into a general RD model.

A 1-D reaction-diffusion system is described by

∂u(x)
∂t

= gu∇2u(x) + fu[u(x), v(x)] (2)

∂v(x)
∂t

= gv∇2v(x) + fv[u(x), v(x)] (3)

where u(x) and v(x) denote the concentrations of two differ-
ent chemical species at spatial position x; gu,v , the diffusion
coefficients; and fu,v(·), the reaction model. Here, we employ
Oregonators [1] for the reaction model; i.e.,

fu[u(x), v(x)] = u(x)[1 − u(x)] − av(x)
u(x) − b

b + u(x)
fv[u(x), v(x)] = u(x) − v(x)

where a and b denote the reaction parameters. Depending on
the reaction parameters, the Oregonator exhibits limit-cycle
oscillations and excitatory behaviors. In this paper, we only
consider the excitable properties (gv = 0 only), which means
the Oregonator is stable as long as an external stimulus is not
applied. In the model, three types of reaction states are defined
at one Oregonator, namely, inactive, active, and refractory
states. When the Oregonator is inactive, it is easily activated
by an external stimulus, following which it changes to the
refractory state. During the refractory state, the Oregonator
cannot be activated even if an external stimulus is applied.

Although gu is constant in general RD models, we are more
interested in a system where gu is locally modified by the
potential gradient of u(x).

When u(x) and v(x) are represented by voltages on the
RD hardware, the gradient (diffusion terms in the RD model)

is represented by linear resistors [9]. For example, if one
discretizes Eq. (2) spatially as

dui

dt
=

gu · (ui−1 − ui) + gu · (ui+1 − ui)
∆x2

+ fu(·)

where i is the spatial index, and ∆x the discrete step in space,
terms gu · (ui−1 − ui) and gu · (ui+1 − ui) represent current
flowing into the i-th node from the (i − 1)-th and (i + 1)-th
nodes via two resistors whose conductance is represented by
gu. The spatial Laplacian ∇2 in Eq. (2) can be approximated
as

∇2u(x) =
ui−1 + ui+1 − 2ui

∆x2
.

Here, we introduce the memristor model described by Eq. (1);
in this model, the resistors are replaced with memristors. The
resulting point dynamics are given as

dui

dt
=

gu(wl
i)(ui−1 − ui) + gu(wr

i )(ui+1 − ui)
∆x2

+ fu(·)
dvi

dt
= fv(·)

where gu(·) denotes the monotonically increasing function
defined by

gu(wl,r
i ) = gmin + (gmax − gmin) · 1

1 + e−βwl,r
i

where β denotes the gain; gmin and g max denote the mini-
mum and maximum coupling strengths, respectively, and wl,r

i

denote the variables for determining the coupling strength of
the i-th Oregonator (l: leftward, r: rightward). Finally, we
introduce the following memristive dynamics for wl,r

i :

τ
dwl,r

i

dt
= gu(wl,r

i ) · η1 · (ui−1,i+1 − ui) (4)

where the right-hand side represents the current of the mem-
ristors in Eq. (1), and η1 denotes the polarity coefficient
(η1 = +1 : wl

i, η1 = −1 : wr
i ). The model above corresponds

to an electrical RD system consisting of Oregonators whose
diffusive resistors are replaced with memristors (Figure 2).

III. SIMULATION RESULTS

In the following simulations, we use the following param-
eters for memristors: β = 1, gmin = 10−4, and gmax = 10−1.

A. 1-D Reaction-Diffusion Medium

First, we simulated the basic model shown in Figure 3(a).
One side of the boundary was stimulated by a periodic
pulse sequence, and the conductance of the memristor was
measured. The initial conductance of the memristor was set at
zero. Figure 3(c) shows the simulated results. The conductance
was increased considerably during the onset of the input pulse,
which resulted in a small increase in the conductance. We
roughly estimated ∆g per single pulse (0.17 mS/pulse). Figure
3(b) shows the opposite simulation setup. In this simulation,
the polarity of the memristor was inverted; therefore, one can
expect the conductance to be decreased by the input pulses.
The initial conductance was chosen such that stimulations
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Fig. 3. Simulation results for two Oregonators with memristors

to u0 could cause chain excitation on u1 via the memristor.
Figure 3(d) shows the temporal responses of u1. The stimulus
was initially applied (u1 was excited), but was terminated
because of the decrease in the conductance. It should be noted
that in both models of Figures 3(a) and (b), the boundary
condition is Neumann boundary condition.

Figure 4(a) shows the simulation results of a 1-D medium
with 100 Oregonators without memristive effects. Excitable
wave propagation on the medium is apparent. Both boundaries
were simultaneously stimulated, and the waves collided at the
center position (following which they disappeared). When the
memristive effects were introduced, given that the coupling
strength gu(wl,r

i ) is modified by the direction of wave propaga-
tion, the results were different from those shown in Figure 4(a).
Figure 4(b) shows the simulation results of a 1-D medium
consisting of 100 Oregonators with memristive effects, where

i

i

(a) Excitable wave propagation on resistive media

(b) Excitable wave propagation on memristive media
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Fig. 4. Simulation results for 100 Oregonators consisting of normal resistors
(a) and memristors (b)

the velocity of each excitable wave was different depending
on the direction of wave propagation, which resulted in wave
collision at a position other than the center (following which
the waves disappeared). Excitable waves moving rightward (in
the figure) increased wl,r

i of the memristors under the wave,
whereas the leftward waves decreased wl,r

i under the wave, as
a result of the polarity of memristors shown in Figure 1.

Then, we prepared a 1-D medium with 100 Oregonatorsm
as well, and we assumed a cyclic boundary condition. After
stimulating one node (the 58th node in our simulation), an
excitable wave propagates on the medium in a cyclic-looping
manner. In the initial stimulation, wave propagation was uni-
directional because the refractory states of the Oregonators
were controlled. The initial conductance of the memristors
was set at gmin. Figure 5 shows the time courses of all the
nodes (ui) where the magnitudes are represented by gray-
scale tones. Spatial (nonuniform) patterns developed over time.
Surprisingly, the developed patterns were periodic, like Turing
patterns, and they reached equilibrium at around 2 × 104 s.
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Fig. 5. Spatial pattern formation on 1-D excitable media with memristors
under cyclic boundary condition

Fig. 6. Ocean-surface-wave patterns on 2-D media with memristors

B. 2-D Reaction-Diffusion Medium

Finally, we prepared a 2-D memristive medium with 100 ×
100 Oregonators and assumed a cyclic boundary condition. For
the 2-D RD medium, we introduce the following memristive
dynamics for wup,d

i :

τ
dwup,d

i

dt
= gu(wup,d

i ) · η2 · (ui−1,i+1 − ui), (5)

where wup,d
i denotes the variables for determining the coupling

strength of the i-th Oregonator (up: upward, d: downward);
and η2, the polarity coefficient (η2 = +1 : wup

i , η2 = −1 :
wd

i ). We assumed both the polarity coefficients η1 (Eq. (4))
and η2 to be -1.

The initial state of all the Oregonators was set to be inactive
state. After stimulating the center node, the excitable waves
propagated outwards, resulting in the generation of patterns
of ocean surface waves. Figure 6 shows the time courses
of all the nodes (ui,j) (ui,j = 0: white, ui,j = 1: black).
The velocity of waves propagation was deferred depending
on the direction of the wave propagation. According to the
polarity of the memristors (η1, η2 = −1), the conductance of
the memristors shown on the right-hand side and below would
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Fig. 7. Simulation results on conductance of memristors for 2-D media
(ocean-surface-wave patterns)

increase whereas the conductance of those shown on the left-
hand side or above would decrease; therefore, one can expect
the waves to collide at the left-hand side and upward. Figure 7
shows the conductance of all the nodes, where the magnitudes
are represented by gray-scale tones. It should be noted that
these results were plotted when the conductance condition was
stable given that the conductance changes considerably when
the wave is propagating. Even after the waves propagated 10
times, the change in conductance was still small, after the
waves propagated over that 20 times at the position where the
waves generated at the beginning and collided, the memristor
conductance changed considerably (Figure 7(a)). Figure 7(b)
shows the conductance of all the nodes over a sufficient time
period.

Then, instead of extraneous stimulus, the initial stimulation



Fig. 8. Clockwise and counterclockwise spiral patterns on 2-D media with
memristors

was changed by controlling the states of the Oregonators. In
Figure 8, the values of ui,j are represented on a gray scale
(ui,j = 0: white, ui,j = 1: black). Several Oregonators next
to the inactive Oregonators were initially set in a refractory
state (down side of the black bar in the top-left snapshot in
Figure 8). The inactive Oregonators next to the black bar were
suppressed by the adjacent Oregonators in the refractory state
(Oregonators in black bar). When the inactive Oregonators
were in an active or inactive state, the wave rotated inwards,
which resulted in the generation of clockwise and counter-
clockwise spiral patterns. Depending on the direction of wave
propagation, the velocity of the rightward and downward
waves was faster than that of the leftward and upward waves,
given that η1 in Eq. (5) and η2 = −1 in Eq. (6) are both
-1. Over time, the initial position of the generated waves, is
moved to the lower right. Figure 9 shows the conductance of
all the nodes, where the magnitudes are represented by gray-
scale tones. It should be noted that these results were plotted
when then conductance of some memristors was still unstable.
Figure 8(b) shows the conductance of all the nodes over a
sufficient time period.

IV. SUMMARY

We proposed a new reaction-diffusion-based excitable
medium that employed memristors to represent diffusion
coupling. Through numerical simulations, we found that the
medium could develop spatial patterns, and the memristor
conductance changed according to the excitable wave collision
and generation. We will further investigate the spatiotemporal
properties of a model with random replacement (polarity) of
memristors.

Fig. 9. Simulation results on conductance of memristors for 2-D media
(clockwise and counterclockwise spiral patterns)
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