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Abstract— This paper presents an FPGA implementation of a
memory-efficient stereo vision algorithm. Recently, a hardware-
oriented stereo vision algorithm using 1-D guided filtering was pro-
posed [1]. Our architecture is based on this algorithm and calculates
the depth map in 1-D space, and therefore, the required amount of
memory is significantly reduced. To realize high speed processing,
we apply a full-pipeline and highly parallel structure. Implemented
on FPGA, our design uses an 89 kb memory and achieves a 188
frame per second rate for 384×288 stereo images. The accuracy of
the disparity map is not satisfactory; however, it can be improved
by a small amount of software processing (8.6 ms) [1]. This result
shows that the proposed architecture is highly efficient in terms of
the required memory, and its processing speed and accuracy is the
same as that of other methods.

Index Terms—Stereo Vision, Guided Filter, FPGA

I. INTRODUCTION

STEREO matching is a method for estimating a depth map
from a stereo image pair. It is desirable to calculate a depth

map in real time so that it can be applied for tracking objects,
surveillance, pedestrian detection, and so on. Therefore, many
researchers have proposed high speed and high accuracy stereo
matching methods, and an FPGA or GPU is often used as an
accelerator.

GPU-based methods yield high accuracy disparity infor-
mation, since they employ a complex algorithm. Recently,
several methods that employ an edge-preserving filter, such
as a guided filter [2], bilateral filter [3], and domain transform
filter [4], have been proposed. The method proposed in [5]
provides the best accuracy of all the high-speed methods. It
achieves a speed that is close to real-time, and holds the second
place in the Middlebury stereo evaluation ranking [6].

FPGA-based methods achieve a very high processing speed
for a large image having dense disparity. Correlation-based
algorithms (SSD, CENSUS) and dynamic programming are
often employed ([7],[8]). The objective of some research
studies was to achieve an implementation that requires only a
small amount of resources. For example, the method presented
in [9] reduces the required memory size to 0.9 Mb. However,
in these studies, the error rates that were obtained were
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high or were not evaluated numerically. Meanwhile, Jin and
Maruyama presented a system that is, to the best of our
knowledge, state of the art [10]. It maintains an accuracy
that places in the middle of the Middlebury stereo evaluation
ranking and achieves 199.7 fps for an image size of 1024×768.

These methods are satisfactory in terms of both processing
speed and accuracy. However, in terms of their application in
mobile devices, there is room for improvement. A small device
cannot be equipped with a high-end GPU, since it consumes
a large amount of energy and uses a large space. Jin and
Maruyama’s method, which achieves the best performance in
FPGA, requires a memory size of 7 Mb. In cases where only
on-chip or limited off-chip memory can be used to create a
compact package, 7 Mb is too large a memory size.

In this paper, we propose a memory-efficient stereo vision
architecture for implementation in mobile device applications.
Our algorithm is based on 1-D guided filtering and calculates
the disparity map using 1-D information only. Our designed
architecture employs a 1-D guided filter in parallel and applies
a full pipeline structure. Therefore, it achieves both a reduction
in the required amount of memory and high speed processing.
On the other hand, the error rate is quite high, because 2-
D information is missing. However, by applying simple 2-D
software processing to the 1-D hardware output, the error rate
can be reduced. When realized in an Altera Stratix II device,
our circuit required 89 kb of memory and achieved a rate of
188 fps at 20 MHz for producing a 384× 288 disparity map.

The rest of this paper is organized as follows. In Sec-
tion II, we introduce our stereo matching algorithm and 2-
D-software refinement processing. Then, the details of our
designed architecture are described in Section III. In Section
IV, the experimental results for FPGA implementation are
given. Finally, in Section V we present our conclusions.

II. ALGORITHM AND 2-D SOFTWARE
REFINEMENT

In general, a local stereo matching algorithm is divided into
four steps: i) Cost calculation: a cost map is calculated for each
disparity according to the similarities of the corresponding
pixels in the stereo image; ii) Cost aggregation: cost maps are
filtered to suppress noise; iii) Disparity computation: disparity
for each pixel, usually that with the lowest cost, is selected;
iv) Disparity refinement: errors in the depth map are detected
and fixed.

Our algorithm is based on that presented in [2], and thus,
the processes in steps i), iii), and iv) remain the same. The
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Fig. 1: Comparison of the buffer size. The black frame of
pixels are used in the calculation. In a 2-D process, the gray
pixels outside the black frame must be conserved.

difference is in the cost aggregation step (ii). We applied gray-
scale and one-dimensional filtering to 2-D guided filtering
to reduce the required amount of memory. 2-D software
processing, which improves a 1-D disparity map, is also a
characteristic of our system.

A. 1-D Cost Aggregation

Rheman et al. employed a guided filter in cost aggregation
[2]. The given input image is a pixel I(x, y); the equations
are

A(y, x) =
I(y, x)C(y, x) − I(y, x) C(y, x)
I(y, x)2 − I(y, x) I(y, x) + ε

(1)

B(y, x) = C(y, x) − A(y, x)I(y, x) (2)

C ′(y, x) = A(y, x)I(y, x) − B(y, x) (3)

where X(y, x) denotes the mean of X in the window centered
at position (y, x), and ε denotes a regularizing parameter. This
filter smooths the cost C using I , and outputs C ′.

In our method, we adopted a 1-D process and gray scale
for guided filtering. If the input image is given by a raster
scan, calculating X in 2-D space requires a large amount
of memory. Using a fast calculation algorithm [11], 2-D box
filtering requires 2r line buffers (Fig. 1(a)). Here, r is a filter
radius. On the other hand, calculating X in 1-D space reduces
the required memory size to 2r + 1 (Fig. 1(b)). The amount
of calculation required using the formulae (1) to (3) is six
times greater, and thus, a 1-D method can greatly reduce
the required memory size. Gray scale guided filtering is also
memory efficient. The amount of information contained in the
RGB scale is three times that in the gray scale, and therefore,
gray scale calculating reduces the memory size by 1/3. It
should be noted that the accuracy of the disparity map does not
deteriorate significantly, since the RGB information is already
contained in the initial cost.

The 1-D process increases the error rate but it can be refined
to some degree by adopting a variable filter size. In our system,
since there is no correlation between different rows, the filter
radius can be assigned to each row independently. The filter
radius is determined by tendency T of texture continuity:

T (y, x) =
∑

x

|If
rlarge(y, x) − If

rsmall(y, x)| (4)

where If
r is the gray scale image 1-D box filtered with radius

r. If the values of both inputs are close, it is considered that

the textures repeat a similar pattern. The filter size of each
line processing is selected using the tendency and thresholds.
In our experiment, two threshold values, θ1 and θ2(= 2θ1),
and three approximate radius values,rs, rm(= rs +rstep), and
rm(= rs + 2rstep), were determined. We confirmed that the
error rate is improved by approximately 0.18%.

B. 2-D Software Refinement

2-D software processing consists of preprocessing, error
correction, and applying a median filter.

Before completing the refinement, the error detection and
noise reduction is preprocessed. The 1-D hardware output does
not consider the vertical connections of disparities, and errors
occur as horizontal streaks. In error detection, the vertical
gradient of the target pixel (x, y) and (y ± 1, x) is used for
labeling. The labeled pixel contains streak errors or correct
edge information. In noise reduction, if the disparity of the
upper and lower pixel is equal, the center pixel is corrected to
the same value.

Error correction is performed according to the five nearest
non-labeled pixels above and below the target pixel. The mode
disparity of a 5-pixel set whose colors are closer to that of the
target pixel is used for the correction.

2-D refinement is completed with a 5 × 5 median filter
for denoising. The details of 2-D software refinement are
described in [1]. Figure 2 shows a comparison of the 1-D
hardware and 2-D software outputs.

In this study, the entire 2-D refinement algorithm is pro-
cessed by software, but the preprocessing can be implemented
on hardware equipped with a 3-line buffer. On the other
hand, the error correction must be executed by software. This
requires a vertical direction process, and means that a frame-
size memory is necessary for the hardware implementation.

III. FPGA IMPLEMENTATION

The solid blocks of Fig. 3 show the block diagram of
our architecture. The depth resolution (≡ 2N ) determines the
degree of the parallelism, where the output latency increases
as N increases, while the throughput is constant for different
N values. Since our circuit is fully pipelined, each pixel of
the left and right image (H × W ) is input and 1 disparity
pixel is output in every clock cycle. Therefore, a latency of
about 4 × W clock cycles is required, but the frame rate is
determined by the clock frequency f and the image size.

Fig. 2: Example of the Teddy dataset. Left: 1-D hardware
output. Right: Processed 2-D software refinement.
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Fig. 3: Block diagram of proposed parallel stereo-matching architecture
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The system consists of two radius estimators for left and
right sequential images, 2N+1 − 1 delay registers (Z−1) for
generating binocular disparity, 2N+1 cost estimators, 2N+1

guided filters, two loser-takes-all circuits to find the minimum
costs for the left and right blocks, and an occlusion-check and
refinement circuit.

A. Radius Estimator

The given input (sequential) left and right image are first
sent to the radius estimator (Fig. 4), which outputs the radius
values for the subsequent guided filters. Since the radius
estimator employs gray-scale information, an RGB 24 bit pixel
is converted to a gray-scale 8 bit pixel. Then, the sum of the
absolute difference of If

rlarge and If
rsmall is calculated, and the

filter radius is determined by comparing this value with the
threshold θ. The bandwidth of the output is sufficient to use
2 bits as a control signal.

The radius values are obtained after reading one line of input
images. Therefore, the input image sequences are delayed by
the line buffers, as shown in Fig. 4.

B. Cost Estimator

After the radius estimation step, the delayed image se-
quences arrive as inputs at the shift register (leftmost and
rightmost of Z−1 in Fig. 3), which gives the pixel values
shifted from 0 to 2N − 1 pixels in both the left and right
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Fig. 5: Block diagram of 1-D-guided filter
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direction. The cost estimator receives both shifted and non-
shifted pixel values and accumulates the cost between them
in parallel. The disparity between the left and right images is
equivalent to the number of shifts. In the cost estimator, the
cost map C for each disparity d is calculated using

Cd(y, x) = min[|Ileft(y, x) − Iright(y, x − d)|, τ1]
+γmin[|∇xIleft(y, x) −∇xIright(y, x − d)|, τ2]

(5)

where ∇x is the gradient of the x direction, α is the parameter
to balance the effect of color and gradient, and τ1,2 are
threshold values. The color cost employs the RGB channel,
and the gradient cost employs gray scale.
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C. 1-D Guided Filter

The calculated cost maps C are then smoothed, using the
edge of the gray scale image I , by parallel guided filters. As
shown in Fig. 5, our 1-D guided filter circuit consists of six 1-
D box filters and associated combinational arithmetic circuits,
which calculate formulas (1), (2), and (3). The radius of the 1-
D box filter circuits is variable, and can be set at three different
values.

The 1-D box filter is based on a fast calculation algorithm
[11], and is shown in Fig. 6. A register keeps the summed
values of the filter kernel. When the kernel slides to the next
pixel, a new summed value is given by (old summed value)
+ (rightmost pixel value of the target box) - (leftmost pixel
value of the box). Therefore, the shift register is required to
preserve the leftmost pixel value. The 1-D box filter shares a
shift register with a different radius value, because equipping
the system with several shift registers is a waste of cost. Note
that the center of different filter kernel is matched. In this
method, regardless of different radius values, the output timing
is constant.

It should be noted that, in practical implementation, one
may remove two box filters and one multiplier from the 1-D
guided filter, because the values of Ī and Ī2 in Fig. 5 are
common over the line.

D. Occlusion Check and Refinement

Among the smoothed cost maps, the minimum values for
left and right views are selected by loser-takes-all circuits, and
the corresponding disparity values are passed to an occlusion
check and refinement circuit.

In the occlusion check, the calculated disparity map is
checked using left and right consistency. Disparities that
satisfy DL(y, x) 6= DR(y, x − DL(y, x)) are detected as an
error.

The error is corrected by using the disparity values on the
border of the error region. This requires bidirectional scanning,
which we realized in the following method (Fig. 7, (i, ii and
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Fig. 9: Reverse buffer operation

iii)): i) The error region is filled by the disparity values on the
left border; ii) The flow direction of the disparity sequences is
inverted, and the resulting error region is filled by the smallest
disparity values among the filled values in i) and the disparity
values on the right border; iii) The flow direction is further
inverted; the inverted flow represents the refined disparity
output. Figure 7 shows a block diagram of processes i) to
iii), where the left and right fill pixel blocks represent the
disparity filling circuits consisting of combinational circuits,
and the reverse buffers invert the signal flows. The advantage
of this scheme is that the disparity filling circuits consist of
very simple logic elements (Fig. 8). As shown in Fig. 9, the
reverse buffer is constructed using a one line-size RAM and
one up-down counter only. The read address precedes the write
address operation, and both addresses are given by the same
up-down counter. In the count-up operation, the input sequence
is written from 0 to W addresses sequentially. In the count-
down operation, the output sequence is read in the order of
addresses from W to 0, and thus, the signal flows are inverted.
At the same time, the input sequences are written from W to
0 addresses, sequentially. Returning to the count-up operation,
the output sequence is read in the order of addresses 0 from
W , and thus, the signal flows are similarly inverted.

After the errors have been corrected, the hardware process-
ing is complete, and the disparity map is transmitted to the
CPU.

IV. EXPERIMENTAL RESULTS

A. Hardware Experiments

The proposed system was implemented on a commercial
FPGA board (MMS Co., Ltd., Power Medusa MU200-SXII
with Altera Stratix II and onboard SRAMs). The system was
coded by Verilog HDL, and the RTL model was synthesized by
Quartus II. Because the number of logic elements was limited,
N was set at 3 (depth resolution is 23), and, because of this
reduction, the original image was shrunk to 192× 144 pixels.
Table I summarizes the implementation and performance.
The parameters used for cost calculation and aggregation are
{τ1, τ2, γ} = {41, 2, 12}, {ε, wrlarge, wrsmall, θ1, ws, wd} =
{2, 8, 6, 330, 5, 9}.

Figure 10 shows the estimated depth results for three differ-
ent samples produced by the FPGA. Although the precision
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ALUT Register Block memory DSP block 9-bit Input Res. & Depth Output Res. & Depth FPGA CLK
36,969 35,360 32,451 504 192 × 144 (24-bit rgb) 192 × 144 (3-bit) 20 MHz

TABLE I: Implementation and performance summary

tsukuba

kitchen

texture

Fig. 10: Experimental results(192 × 144 pixels, 3-bit depth)

Fig. 11: Error rate vs. implemented depth resolution

of the depth values is degraded because of the reduction in
depth resolution, the FPGA could generate an approximate
depth map. It should be noted that this is certainly due to
the limited number of logic elements in Stratix II, because
our RTL results perfectly matched the numerical results at
any depth resolution, and the RTL results with the 3-bit depth
map matched the FPGA results as well. We also compared the
error rates of the original 4-bit depth map and the degraded
2- and 3-bit depth map, as shown in Fig. 11.

These results indicate that the proposed architecture is not
nominal, but can be synthesized and operated with acceptable
clocks and number/scale of hardware resources. To compare
our method with that presented in [10], we compiled and
estimated a method using an image size of 1024 × 768(Table
II). When we compiled the method, the depth resolution was
reduced to 16 in order to achieve successful compilation.
Using the compilation results, we estimated the hardware
specification at a depth resolution of 64. Since 52% of RAM
is depth resolution-dependent, doubling the depth resolution
to 32 increases the total size of RAM to 152% of that of the
compiled result. When extending the depth resolution from
32 to 64, doubling the size of RAM again results in an

[10] Ours Estimated
Disparity range 60 16 64
LUTS 122 k 111 k 202 k
RAM 7189 k 89 k 266 k
CLK 318.3 M 20.0 M 40.0 M
FPS 199.7 25.4 25.4

TABLE II: Comparison of the hardware specifications for Jin
and Maruyama’s method and our method for an image size
of 1024× 768. Because of lack of resources, our method was
only compiled, and not implemented.

enormous FPGA size. Instead, we doubled the CLK of the
radius generators and guided filters. Thirty two guided filters
are operated twice and generate 64 filtered costs. Thus, the
additional circuits shown inside the dotted box in Fig. 3 are
needed. They are: (i) four line buffers to hold the left and right
lowest cost and its disparity; and (ii) two RGB line buffers
for the left and right input image, which have a total size of
130 kb. As a result, the estimated size of RAM for a depth
resolution of 64 was 266 kb, which is only 3.7% of that of the
system proposed in [10]. Therefore, we can say our method
is a low-memory method.

B. Software Experiments

The measurement of the software was conducted on an Intel
Core i3 2.53GHz PC, using C++ and four Middlebury stereo
pairs. The threshold value was set to 40. The output is shown
in Fig. 12. The Middlebury stereo evaluation ranking of our
method is listed in Table III. The average processing time was
56.6 ms for a 1024×768 image and 8.6 ms on average for the
Middlebury dataset stereo pairs, which are 400 × 380. When
the size of the Middlebury dataset is used, a significant amount
of time remains to place the depth-aided application.

V. CONCLUSIONS

This paper presented an FPGA implementation of a
memory-efficient stereo vision algorithm. The most significant
element of the memory reduction was adapting the 1-D process
and gray scale to guided filtering. The proposed architecture
employs 1-D guided filters in parallel and a full-pipeline

Fig. 12: Left: Results of the Middlebury data set. Right:
Ground truth
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Tsukuba Venus Teddy Cones
Method nonocc all disc nonocc all disc nonocc all disc nonocc all disc average
CostFilter[2] 1.51 1.85 7.61 0.20 0.39 2.42 6.16 11.8 16.0 2.71 8.24 7.66 5.55
Fast[10] 1.38 1.84 7.36 0.30 0.48 2.09 7.41 12.7 17.5 3.44 9.19 9.90 6.13
Ours 2.25 2.81 9.45 1.23 1.76 6.83 4.84 10.5 13.0 3.54 8.90 9.83 6.24
RealTimeBP[12] 1.49 3.40 7.87 0.77 1.90 9.00 8.72 13.2 17.2 4.61 11.6 12.4 7.69
RealTimeDP-Tree[13] 1.49 2.51 6.60 2.37 2.97 13.1 8.11 13.6 15.5 8.12 13.8 16.4 8.71

TABLE III: Middlebury evaluation of previous methods and our method

structure to achieve high speed processing. The results of the
FPGA implementation showed that our design performs at
a rate of 188 fps and requires only an 89 kb bit memory
for a 384 × 288 image. Moreover, the disparity map, which
is improved by a small amount of software processing (8.6
ms), maintained sufficient accuracy. Owing to the use of
Middlebury datasets, the average percentage of bad pixels is
6.24%. Our architecture is targeted at applications for mobile
devices. The results that we obtained for the speed, accuracy,
and cost of the processing are satisfactory.
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