
Exploiting Hardware Reconfigurability
on Window Join

Eric Shun Fukuda*, Hideyuki Kawashima†, Hiroaki Inoue‡, Tetsuya Asai* and Masato Motomura*
* Graduate School of Information Science and Technology
Hokkaido University, Sapporo, Hokkaido 060-0814, Japan

fukuda@lalsie.ist.hokudai.ac.jp
† Faculty of Systems and Information Engineering

University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
‡ NEC Corporation

Kawasaki, Kanagawa 211-8666, Japan

POSTER PAPER

Abstract— Stream processing is attracting wider attention in
recent years, and in order to get high efficiency, more people are
now trying to leverage hardware for stream processing. In this
paper, we clarify two issues by taking window join as an example
application: a) how a software engineer would efficiently utilize
hardware, and b) how adaptiveness will be achieved on it. We use
a dynamically reconfigurable hardware with a C-based high level
synthesis tool as our evaluation platform. The throughput
improved by 216 times through software code optimization, and
achieved 26 times higher throughput/power efficiency than an
optimized software solution for a CPU. We conclude that a
software engineer with certain hardware knowledge will be able
to facilitate hardware, and dynamic reconfiguration capability
improves the throughput/power efficiency of stream processing.

Keywords- stream processing; window join; high level
synthesis; processor architecture

I. INTRODUCTION
Stream processing is attracting considerable attention [1] as

an important computation paradigm in the era of big data and
cloud computing. Although they are dealt with distributed
processors on parallel servers, it is expected that the demand
for higher throughput and the power consumption will still
continue to grow. In view of solving this issue, hardware-
oriented acceleration of stream processing using field-
programmable gate arrays (FPGAs) has been actively studied
[2]-[4]. In essence, hardware customized to a given problem
can achieve much higher throughput/power than a software
solution that runs on general-purpose hardware. However, such
hardware solutions typically have two major drawbacks: (1)
they have limited in-field flexibility and (2) software engineers
find it difficult to design them. As adaptive query becomes an
important notion in stream processing, issue (1) needs to be
addressed seriously, and since the algorithms are mainly
developed by software engineers, (2) is important too. Solving
these problems on an FPGA-based framework has been an
active research topic in recent years. However, the dynamically
reconfigurable processor (DRP) developed by one of the
authors of this paper [5] may serve as another good foundation

to overcome these drawbacks due to its outstanding in-field
flexibility and its C-based design environment.

We carried out an experimental step-by-step (eight step)
implementation of adaptive stream processor on DRP by
considering window join (a stream version of SQL join), a
simple but extensively studied important operation in stream
processing, as a case study. Our goal is to find answers to the
following questions: i) how a software code for hardware
synthesis should be optimized, ii) how performance changes
according to different modifications, iii) how dynamic
reconfiguration helps achieving adaptiveness of the solution.

II. RELATED WORK
One of the works on hardware-accelerated stream

processing uses a C-based high-level synthesis tool [2]. This
system allows users to specify complex events by sequencing
simple events described with custom C functions that will be
synthesized into hardware. Another work uses SQL queries for
describing the algorithm [3] whose operators are mapped to
corresponding tiny circuit elements. Both of these works are
further studied to be dynamically reconfigurable [4] [6]. Since
DRP is inherently dynamically reconfigurable and has a C-
based design tool, it should have the potential to be the
platform for stream processing.

III. IMPLEMENTATION
The feature of each step was as follows:

1. Simple C code that software engineers would probably

This work was partially supported by JSPS Grant-in-Aid for Challenging
Exploratory Research (No. 24650033).

Figure 1. Synthesized architecture of Step 7.

write as their first step.

2. Sliding window buffer which reduces the number of
memory accesses for fetching the incoming data.

3. Parallelized output data buffer which enables comparisons
between two stream data to be done in parallel.

4. A bit table that holds the comparison results and as a result
outplaces the register-consuming parallel output buffers.

5. Prefetching of the incoming data in chunk which reduces
the delay of incoming data.

6. Accessing the table in parallel by dividing the 32-bit wide
table into 8-bit width. (DRP has 8-bit architecture.)

7. Folding (pipelining) of the main loop.

8. Low match optimization by separating the output procedure
which scarcely runs from the main loop.

Figure 1 shows the synthesized architecture of Step 7. It
shows the sliding window buffer in the left and the table in the
upper right. All steps were implemented in C, including the
folding feature which could be implemented simply by
specifying a folding attribute to a loop.

IV. DISCUSSION
Figure 2 highlights the throughput improvement through

the optimization. It indicates that the final step is 216 times
faster than the first step. For reference, window join runs on an
Intel Core i5-2520M at 539 Mbps when it runs in four threads.
The relative ratio of the throughput/power of the DRP to that of
the CPU is 26. This further proves the advocated
throughput/power advantage of reconfigurable hardware
acceleration.

The throughput once falls in Step 3 because it requires a lot
of registers for synthesizing the code in Step 3. Figure 3 shows
the efficiency of the resource usage and analyzes the
implementation process in more details than [7]. In the figure
you can see that the resources are not efficiently used in Step 3.
Therefore in Step 4, a new architecture was introduced in order
to substitute the register usage with memories. The efficiency
of the resource usage increased greatly in the following steps
which in consequence improved the throughput. Although the
efficiency of memory usage reduced in Step 8, it helped the

efficiency of register (it is a faster resource than a memory)
usage increase.

Figure 4 compares the throughput of Steps 7 and 8, the
latter being optimized for a low match rate between the tuples
in two streams. Since the DRP core can reconfigure its
configuration cycle-to-cycle, it can switch its architecture
between Steps 7 and 8, and thereby operate more efficiently
than a non-dynamically reconfigurable hardware.

V. CONCLUSION
Our research motivation was to address two issues a) how

and how much a software engineer can cultivate hardware
acceleration, and b) how adaptiveness can be achieved in such
a solution. We conclude that I) a state-of-the-art high-level
synthesis tool is sufficiently powerful for writing all source
code in C, however II) software engineers using the tool should
still have some knowledge of hardware development and III)
the dynamic reconfiguration of DRP provides a good means for
adaptive processing. As future work, we will examine our
proposal on various platforms such as commercial FPGA.

ACKNOWLEDGMENT
We are deeply grateful to Koichiro Furuta, Taro Fujii,

Takeshi Inuo, and Takao Toi at Renesas Electronics
Corporation for their helpful discussion and support.

REFERENCES
[1] A. Arasu, S. Babu, and J. Widom, “The CQL continuous query

language: semantic foundations and query execution,” The VLDB
Journal, vol.15, no.2, 2006.

[2] H. Inoue, T. takenaka, and M. Motomura, “20Gbps C-based complex
event processing,” Proceedings of the 2011 21st International Conference
on Field Programmable Logic and Applications (FPL), 2011.

[3] R. Muller, J. Teubner, and G. Alonso, “Stream on wires – a query
compiler for FPGAs,” Proceedings of the VLDB Endowment, vol.2,
no.1, 2009.

[4] M. Takagi, T. Takenaka, and H. Inoue, “Dynamic query switching for
complex event processing on FPGAs,” Proceedings of the 2012 22nd
International Conference on Field Programmable Logic and Applications
(FPL), 2012.

[5] M. Motomura, “A Dynamically reconfigurable processor architecture,”
Microprocessor Forum, 2002.

[6] T. Miyoshi, H. Kawashima, Y. Terada, and T. Yoshinaga, “A coarse
grain reconfigurable processor architecture for stream processing
engine,” Proceedings of the 2011 21st International Conference on Field
Programmable Logic and Applications (FPL), 2011.

[7] E.S. Fukuda, H. Kawashima, H. Inoue, T. Fujii, K. Furuta, T. Asai and
M, Motomura, “C-based adaptive stream processing on dynamically
reconfigurable hardware: a case study on window join,” to appear in
Proceedings of the 2013 9th International Symposium on Applied
Reconfigurable Computing (ARC), 2013.

Figure 4. Match rate dependency (Step 7 vs 8).

Figure 3. Efficiency of resource usage.

Figure 2. Improvement of the throughput.

