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Abstract

We have developed a compact CMOS motion-
detection circuit based on a direction-selective neural-
network architecture. The circuit consists of asyn-
chronous current-mode digital subcircuits for edge de-
tection and subthreshold analog subcircuits for motion-
detection. SPICE and numerical simulations of the
network show that the circuit can successfully extract
edge lines from incident images and compute the two-
dimensional local velocity of the image motion from the
movement of the edge lines. The circuit is useful for
constructing small-sized, low-power vision processing
systems.

1 Introduction
One of the promising areas of research in vision elec-

tronics is the development of compact, practical motion-
detection devices modeled after the mechanism of bio-
logical vision. This paper proposes one such promis-
ing device, an analog-digital hybrid CMOS circuit that
performs motion detection by means of the direction-
selective neural network architecture.

Ordinary motion-detection is performed by the cal-
culation of an optical flow field. The optical flow field
of an incident image is calculated at regular time inter-
vals, then a motion vector field is estimated from the
calculated data of the optical flow field. Practical vision
algorithms [1, 2] and electronic vision circuits [3, 4, 5]
for the motion detection have been developed. This
approach is orthodox and easy to combine with other
picture processing. However, it requires a large-scale
processing hardware and, therefore, cannot be used for
constructing compact, low-power systems.

Recently, bio-inspired LSIs based on neuromorphic
engineering have been investigated in the literature [6,
7, 8]. Biological vision systems perform motion detec-
tion in a quite different (but very effective) way. The
insect neuro-optical system, for instance, uses medulla
as a small spatial-field motion detector. It detects local-
field motion with a lobula-plate (an organ having large
directional selectivity to motion) and aggregates the lo-
cal motion data with a lobula-complex (an organ that
includes many lobula-plates as constituent elements)
to detect wide-field motion [9]. This fact implies that
we can implement effective motion detection by com-
bining the following procedures: i) detection of local

motion at an early stage and ii) aggregation of the local
motions at the subsequent stage. After the development
of the model of such a biological vision system, a num-
ber of neuromorphic vision chips have recently been
studied and developed [6, 7, 8, 10]. The vision chips
(modeled after the mechanism of biological vision) will
certainly be in great demand in the future as powerful
visual pre-processors because of their capability of par-
allel and real-time operations.

Aiming at the development of practical motion-
detection systems based on the biological approach,
we have developed an analog-digital hybrid CMOS cir-
cuit that implements a motion-detection network and a
direction-selective neural network. The proposed cir-
cuits detect local motion by using subthreshold analog
CMOS subcircuits designed for implementing a biolog-
ical correlation neural network. The detected local mo-
tions are aggregated in a successive subcircuit to form
wide-field direction-selective neural fields. For practi-
cal use of the motion-detection system, we also devel-
oped additional subcircuits for noise removal, quantiza-
tion, and edge detection.

This paper is organized as follows. In Sect. 2, we
first illustrate preprocessing required for motion detec-
tion, then introduce bidirectional correlation networks
that respond to bidirectional motion of visual targets.
In Sect. 3, we propose a model of direction-selective
neural networks that uses the correlation networks. The
CMOS circuits for implementing the preprocessing and
the correlation neural networks are proposed in Sect. 4.
Section 5 shows the operation of the proposed circuits
and models. Section 6 is devoted to summary.

2 Motion detection with correlation neu-
ral networks

A correlation neural network (CNN) [11, 12, 13],
which accounts for velocity sensitive responses of neu-
rons, is suitable for analog circuit implementation of
motion-detection systems and has been successfully
implemented on CMOS LSIs [14, 15, 16, 17]. The
CNN utilizes local motion detectors to correlate sig-
nals sampled at one location in the image with those
sampled after a delay at adjacent locations,however, an
edge-detection process is required in practical motion-
detection systems with the CNNs [16, 18]. In this sec-
tion, we introduce a compact edge-detection circuit that
has current-mode input-output interfaces. Then, we in-
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Figure 1: A simple edge-detection scheme for a motion-
detection system: (a) luminance distribution of an input
light; (b) quantized distribution of the input light with a
given threshold value in (a); and (c) edged distribution
obtained from the quantized distribution in (b).

troduce a subthreshold analog CMOS circuit for the mo-
tion detection.

The edge detection is performed by the following
three processes: (i) an image smoothing for noise re-
moval, (ii) a quantization of input images, and (iii) an
exclusive OR (XOR) operation of the quantized images
for the edge detection (Fig. 1). The smoothed lumi-
nance values of pixels in the input image [Fig. 1(a)] are
quantized to logical “0” or logical “1” around the given
threshold value [Fig. 1(b)]. Then, an edged-image is ob-
tained by the XOR operation between the neighboring
quantized values [Fig. 1(c)].

Figure 2 shows a primitive CNN for local motion de-
tection. The network consists of (i) signal receptors
(SRs) that receive the edged-images produced by the
XOR operation, (ii) a delay neuron (D), and (iii) a corre-
lator (C) that correlates the adjacent output of the signal
receptor and the delay neuron. In Fig. 2, an output of
the (i − 1)-th signal receptor (SRi−1) is sent to a de-
lay neuron (Di−1) that produces a delayed signal. An
output of the i-th correlator C i (Vout,i) is given by cor-
relation values between (Di−1) and (SRi). The output
of the correlator (Vout,i) depends on the velocity of the
edge moving from SRi−1 to SRi; in consequence, we
can obtain the local velocity signal by the CNN struc-
ture. On the other hand, if the edge moves in the oppo-
site direction (SRi to SRi−1), the outputVouti, becomes
zero because the delay mechanism decreases the corre-
lation between the delayed signal (Di−1) and undelayed
signal(SRi). Namely, the primitive CNN responds to
only one direction (from SRi−1 to SRi in Fig. 2).

delay neuron
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Ci

Di-1

signal receptor
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Figure 2: A primitive CNN for local-motion detection.
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Figure 3: Bidirectional CNNs consisting of two primi-
tive CNNs.

Figure 3 shows bidirectional CNNs consisting of two
primitive CNNs, which can respond to two directions
(from SRi−1 to SRi+1 and from SRi+1 to SRi−1). In the
figure, correlation integrators (CIs) that integrate out-
puts of correlators (Cx+ and Cx−) are employed for ob-
taining mean local-velocity values. Integrator (CI i) re-
ceives the outputs of the correlators (Cx+,i and Cx−,i)
with excitatory and inhibitory weights, and the output
of the integrator is given by

Vout,i =
∫ t0+∆t

t0

Cx+,i(t) − Cx−,i(t) dt, (1)

where t0 represents the start time of the integration, and
∆t the duration of the integration. The output of the
integrator is proportional to the mean velocity between
time t0 and t0 + ∆t.

By arranging bidirectional CNNs along the x- and
y-axes, as shown in Fig. 4, we can obtain local veloc-
ities by integrating outputs of correlators (C x, Cy) at
each intersection of the CNNs. In the figure, each solid
line and allow represent an array of primitive CNNs and
preferred direction of the primitive CNN, respectively.

3 A model of direction-selective neural
networks

This model is based on scalar-summation of two-
dimensional local velocities. We employ the two-
dimensional CNNs shown in Fig. 4 for obtaining the
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Figure 4: Arrangement of the bidirectional CNNs for
obtaining two-dimensional local velocities.

local velocities. Suppose that visual targets move in a
two-dimensional plane. In the plane, the luminance-
value distribution is defined by f(x, y, t) as a func-
tion of spatial position (x, y) and time t. Local veloc-
ities of an arbitrary point (x, y) are given by (u, v) ≡
(dx/dt, dy/dt). By regularizing maximum values of u
and v to ±1, we obtain (u, v) = (cos θ, sin θ), where θ
represents the motion direction of the target. Then, we
define weighted scalar-summation of these velocities as

s = α cos θ + β sin θ, (2)

where α and β represent weight strength. Motion direc-
tion of a target (θ), which gives maximum values of s,
is given by

θ =
{

arctan(β/α), (α ≥ 0)
arctan(β/α) + π, (α < 0) (3)

which indicates that a neuron computing scalar value
(s) responds selectively to a target moving along a pre-
ferred direction. The preferred direction is determined
by β/α. Thus, a two-dimensional field of the neurons
s(x, y) responds selectively to motion direction accord-
ing to a spatial distribution of β(x, y)/α(x, y).

Among the various weight combinations of α and
β, we choose a distribution of (α, β) = (cos φ, sinφ),
where φ represents the preferred direction of neurons
(explained above). Under the given distribution, a neu-
ron outputs

s = cosφ cos θ + sinφ sin θ, (4)

which represents a scalar product of vectors
(cos φ, sinφ) and (cos θ, sin θ). The scalar prod-
uct becomes maximum when the direction of the
moving target (θ) agrees with that of the preferred di-
rection of the neuron (φ). By remapping a distribution
of the preferred direction (φ) to space as

φ(x, y) =
{

arctan(y/x), (x ≥ 0)
arctan(y/x) + π, (x < 0) (5)

the preferred direction changes continuously according
to the spatial position (x, y). Namely, radial vectors
from the origin in the neuron field are equivalent to the
preferred direction of the neuron field. In consequence,
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Figure 5: An edge-detection circuit composed of (a) a
current amplifier, a current quantizing circuit, and (b)
an XOR circuit.

the neuron outputs maximum values when the motion
direction of the target (θ) agrees with that of the pre-
ferred direction (φ).

Here we consider an egomotion of the neuron field
instead of moving targets. With the weight strength
given in Eqs. (4) and (5), a translation movement can be
detected by choosing maximum values of neurons by
using winner-take-all networks. Furthermore, the net-
work can detect forward-backward egomotion. In the
case of forward motion, all the radial motion vectors
start from the origin of the field. These vectors repre-
sent the same direction as the preferred direction of the
field. Thus, nonzero outputs can be obtained. In the
case of backward motion, all vectors head toward the
origin. Since the backward direction is opposite to the
preferred direction of the field, no output will be ob-
tained.

4 Analog-digital CMOS circuits for mo-
tion detection

The analog CMOS motion-detection circuit consists
of (i) current amplifiers that amplify incident photocur-
rents, (ii) current quantizing circuits for image smooth-
ing and quantization of input images, (iii) XOR circuits
for detecting edges in the quantized images, and (iv)
correlation circuits for detecting local motion.
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Figure 6: Analog CMOS circuits implementing the
primitive CNN: (a) unit cell of the CNN (solid lines);
(b) an analog circuit for the unit cell (solid lines).

Figure 5 shows the edge-detection circuit consisting
of the current amplifier, the current quantizing circuit,
and the XOR circuit. The current amplifier and quan-
tizing circuit are shown in Fig. 5(a). The photocurrent
is amplified by a current mirror (M1 through M4) with
mirror rate γ. The voltage on node A is nearly equal
to zero (or VDD) when the photocurrent is smaller (or
larger) than threshold current Ith. The voltage is then
amplified by transistors M3, M4, M7, and M8 that form
a pMOS common-source amplifier. The output current
(Iout) is limited to Isat by transistors M9 through M12
and Ma. Thus, the circuit outputs zero current (or Isat)
when the input photocurrent is smaller (or larger) than
Ith.

A current-mode digital logic circuit is developed for
the XOR operation [Fig. 5(b)]. The circuit receives bi-
nary input currents Iin1 and Iin2 from the current quan-
tizing circuit (each current is zero or Isat). If Iin1 =
Iin2 = 0, the output current of the circuit (Iout) is zero
because no input currents are given to current mirrors in
the circuit. If Iin1 = 0 and Iin2 = Isat, current Iin2 is
copied into M4. The current of M4 is then copied into
M9 (I1 = Iin2) and M10, so output current (Iout) is
equal to Iin2 (= Isat). If Iin1 = Isat and Iin2 = 0, cur-
rent Iin1 is copied into M11 (I2 = Iin1 = Isat) through
M2, M6, and M8. The current of M11 is copied into
M14 through M12 and M13, so output I out is equal to
Iin1 (= Isat). If Iin1 = Iin2 = Isat, output current
(Iout) is zero because the current of M4 is equal to the
current of M7 (therefore I1 = 0) and the current of M5
is equal to the current of M8 (therefore I2 = 0). In
consequence, the circuit produces an XOR output from
binary input currents Iin1 and Iin2 (each is 0 or Isat).
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Figure 7: SPICE simulation of (a) a current quantizing
circuit and (b) an XOR circuit.

The correlation circuit (CC) corresponding to the
primitive CNN is shown in Fig. 6. The unit circuit,
which is represented by solid lines in Fig. 6(a), consists
of a unity-gain amplifier (M6 through M9) and a pMOS
common-source amplifier (M2 and M3). The unity-gain
and common-source amplifiers act as the correlator and
the delay neuron, respectively, in the CNN [Fig. 6(b)].
When an input current Iin,i−1, which is larger than the
current of M3, is applied to M1, a voltage output ap-
pears on node Dout,i−1 with a time delay resulting from
the Miller effect in the amplifier. The delay time can be
externally controlled by adjusting common gate-voltage
Vm of M3. A long (or short) delay is obtained for
small (or large) values of Vm. The source current of
differential pair M6 and M7 is determined by input cur-
rent Iin,i through current mirrors M4 and M5. When
the input current (Iin,i) is applied, the output voltage
of the unity-gain amplifier (Vout,i) is equal to the input
voltage (Dout,i−1). When the input current approaches
zero, Vout,i also approaches zero, Therefore, the output
voltage represents a product-like value of those two in-
puts; in consequence, the unity-gain amplifier computes
a correlation-like value between the values of Iin,i and
Dout,i−1.
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Figure 8: Transient responses of the correlation circuit:
(a) input current; (b) delayed voltage produced by the
input current; (c) subsequent input current; (d) output of
the correlation circuit representing the correlation value
between (b) and (c).

5 Simulation results
Firstly, we show SPICE simulation results for the

motion detection systems introduced in Sect. 2. In the
following simulations, we used a typical parameter set
for all transistors assuming a 1.2-µm CMOS process.

Figure 7(a) shows static responses of the current
quantizing circuit. Supply voltage (VDD), saturation
current (Isat), and mirror rate (γ) were set to 100 nA,
5 V, and 10, respectively. Threshold current Ith was
set at 20 nA, 40 nA, 60 nA, or 80 nA. The output of
the circuit Iout was successfully quantized (0 A to Isat)
around γIin = Ith.

Figure 7(b) shows the transient response of the XOR
circuit. Square current pulses (Iin1 and Iin2) were given
to the circuit as shown in the figure (top and middle).
The resultant output current of the circuit is shown in the
same figure (bottom). The output was logical “0” when
Iin1 = Iin2 and logical “1” when Iin1 �= Iin2 , so the
expected XOR operation was obtained. A slight delay
of a few microseconds was observed in the response,
but this is not a problem in the circuit operation.

Figure 8 shows transient responses of the CC in
Fig. 6(b). Supply voltage (VDD) and Vm were set at
5 V and 0.45 V, respectively. In the simulations, input
currents of CCs were given by XOR circuits. First, the
input current was applied to CCi [Iin,i−1 in Fig. 8(a)],
and the corresponding delayed voltage (Dout,i−1) was
produced [Fig. 8(b)]. Then, a subsequent current (Iin,i)
was applied to CCi, as shown in Fig. 8(c). From de-
layed voltage Dout,i−1 and applied input Iin,i, the CCi

calculated correlation voltageVout,i, which was approx-
imately proportional to I in,i ×Dout,i−1 as shown in the
figure. When the light spot (edge) moves at a constant
velocity, the local velocity is represented by an inverse

Figure 9: A chip micrograph of a 3 × 3 matrix of prim-
itive motion-detection circuits.

of the width of the output pulses. Therefore, the local
velocity can be approximately obtained as an inverse
value of the temporal integration of the correlation volt-
age as given in Eq. (1). In the simulaiton, the calculated
total-power dissipation was 3 µW.

We fabricated a prototype LSI by using a 1.2-µm
double-poly double-metal CMOS process. Figure 9
shows a chip micrograph of the motion-detection cir-
cuits. The chip contains 3 × 3 matrix of primitive
motion-detection circuits. The current amplifiers, the
quantizing circuits, and the XOR circuits were fabri-
cated in another chip.

Figures 10 and 11 show numerical simulations of
the direction-selective neural networks described in
Sect. 3. In the simulation, the weight strength of the
network was configured according to Eqs. (4) and (5).
Firstly, two-dimensional local velocities (u, v) were ob-
tained from bidirectional CNNs with moving light bars
[Figs. 10(a) and 11(a)]. Then, distributions of maxi-
mum outputs of the neurons Maxt[s(x, y)] were cal-
culated [Figs. 10(b) and 11(b)]. When the bar moved
rightward along a line y = 0 (θ = 0) [Fig. 10(a)], neu-
rons on a line y = 0 (x > 0) outputted maximum val-
ues among the neuron field (φ = 0). On the other hand,
when the bar moved along a line y = x (θ = π/4)
[Fig. 11(a)], neurons on a line y = x (x > 0) outputted
maximum values (φ = π/4) as expected.

6 Summary
We have developed compact CMOS circuits for prac-

tical motion-detection systems with direction-selective
neural networks. Basic operations of edge-detection cir-
cuits and motion-detection circuits were confirmed by
SPICE.

The developed direction-selective neural network
model has the following advantages: first, the correla-
tion neural networks employed in the model are suit-
able for hardware implementation because of the com-
pact circuit structure and low-power dissipation; sec-
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y = x. (a) Input field and target; (b) resultant
maximum-response distribution of the neuron field.

ond, a simple scalar summation operation can perform
the direction-selective neural field; third, the model can
detect egomotions by means of additional winner-take-
all neural networks.
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