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Abstract

In this report, we present an inhibitory neural network, implemented on analog CMOS chips,
that exhibits competitive behaviors in the frequency and time domains. The circuit for each neuron
was designed to produce sequences in time of identically-shaped pulses, called spikes. The result of
experiment and simulation revealed that the network more efficiently achieved the selective activa-
tion and inactivation of the neuron circuits on the basis of spike timing rather than of firing rates.
The results indicate that the spike-timing-based neural processing by spiking neuron circuits pro-
vides a possible way of overcoming low tolerance problems of analog devices in noisy environments.
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I. Introduction

Silicon circuits that mimic the nervous systems of insects and other animals represent the
future of neurocomputing [1]. The merit of mimicking a nervous system is that artificial neu-
ral systems that include various neural functions can naturally be created by reconstructing
the microstructures of a nervous system (neural network) on a silicon chip. Analog VLSI
is a key to the implementation of large-scale neural networks. However, traditional models
of neurons and neural networks are not suitable for analog VLSI implementation due to
the requirement for accuracy in a computation; i.e., analog devices have poor properties
in terms of the matching and temperature dependence of device characteristics and have
a low degree of tolerance to noisy environments. Therefore it is essential to resolve the
lack of precision and reproducibility at the device level by introducing redundancy at the
hardware neural-network level.

Although the precision, reliability, and noise properties available in single neuron fall short
of those used in even the most rudimentary analog VLSIs, the nervous system exhibits
marvelously accurate behavior. For example, echolocating bats are apparently able to
resolve jitter in the arrival time of their echoes with a precision of 10 nanoseconds [2].
Recent physiological and theoretical studies support the possibility that accurate spike
timing has a role in cortical processing [3]; e.g., constant stimuli lead to imprecise spike
trains, whereas stimuli that include fluctuations produce spike trains with timing that is
reproduced within 1 milliseconds [4]. The results indicate that a low level of intrinsic noise
in spike generation allows cortical neurons to accurately transform a synaptic input into a
sequence of spikes.

Fukai showed that a network of inhibitory integrate-and-fire neurons (IFNs) achieves
a robust and efficient neural competition on the basis of a novel timing mechanism of
neural activity [5]. We found that the network with such timing mechanism provides an
appropriate basis for the development of analog VLSI circuits that overcome the problem of
analog devices, namely the lack of precision and reproducibility. In this report, we present
a novel analog IFN circuit that can easily be implemented on analog VLSIs. We show,



Ispike

Iin
(e)

Iin
(i)

(membrane potential: Ui)
soma

excitatory
synapse

inhibitory
synapse

Fig. 1. Schematic image of the neuron model.
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Fig. 2. The IFN circuit.
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Fig. 3. Inhibitory neural circuits using IFNs.

by both experiments and computer simulations, that a network of the IFN circuits very
efficiently achieves a robust form of neural competition that is based on spike timing rather
than firing rates.

II. The IFN and Network Circuit

Figure 1 is a schematic image of a neuron model. The neuron accepts input currents,
I

(e)
in and I

(i)
in , through the excitatory and inhibitory synapses, respectively. The membrane

potential Ui is produced at the soma as the result of the integration of the input currents. An
excitatory input increases the membrane potential, whereas an inhibitory input decreases
the potential. When the potential exceeds a threshold value, the neuron produces a current
pulse Ispike and the membrane potential is reset to its resting value. This model of the
neuron is called the integrate-and-fire neuron (IFN) [6].

Figure 2 shows an IFN circuit constructed of analog CMOS circuits. The circuit imple-
ments the excitatory and inhibitory synapses of the neuron model as well as the soma. The
excitatory input current I

(e)
in produces the excitatory postsynaptic potential (EPSP) in the

excitatory synapse circuit. The membrane potential Ui is thus increased by the excitatory
postsynaptic current (EPSC) that is produced by the EPSP. Similarly, the inhibitory input
I

(i)
in decreases the membrane potential through the inhibitory postsynaptic current (IPSC)

that is produced by the inhibitory postsynaptic potential (IPSP). An increase in the mem-
brane potential induces an increase in potential Vi. Thus, when the membrane potential
exceeds a certain threshold voltage, input node P of the membrane is suddenly shunted by
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transistor Ms. The shunted current increases exponentially with the membrane potential.
This sudden increase in the current represents the spike generation. The output current
Ispike is obtained by transistor Mo.

The input current Iin and bias current Ib for the circuit determine the magnitude of
the spike and the duration of the refractory period. If both the input current and the
bias current are less than 100 nA, the MOS transistors of the IFN circuit operate in their
subthreshold region [7], where the IFN circuit consumes very little power (on the order of
nW or less) but the MOS transistors are very sensitive to external noise. We are interested
in whether or not the IFN network is able to overcome the noise sensitivity.

We constructed an inhibitory neural network in which the IFN circuits are coupled to
each other through all-to-all inhibitory connections of equal strength. This reduces the
complexity of the connection of N neurons to O(N ). Figure 3 shows the reduced network
consisting of N IFN circuits and a global inhibitor constructed of (N +1) pMOS transistors.
Each IFN circuit accepts an intrinsic external input Vin. The nMOS transistors connected
to the IFN circuits produce an excitatory input current I

(e)
in . The global inhibitor receives

the sum of the IFN outputs (
∑N

i Ispike,i). This total current is copied in each IFN circuit
to produce the inhibitory input current I

(i)
in .

III. Results

We fabricated a prototype IFN chip, using a 1.5 µm CMOS process (MOSIS, vendor:
AMI). Figure 4 is a photograph of the chip that contains four IFN circuits and one global
inhibitor circuit. The capacitors C1, C2, C3, and C4 were designed with a large capacitance
due to the limit on the time resolution of our measurement systems. The capacitors took
up a total area of 120 µm × 200 µm.

Figure 5 shows experimental results for the fabricated IFN circuit. The supply voltage
was set at 5 V and the bias current Ib was set at 100 nA. In the experiment, periodic current
pulses were applied to the excitatory and inhibitory synapse circuit . When an input pulse
was applied to the inhibitory synapse circuit, the membrane potential Ui was decreased by
the increase in the IPSP (see box outlined by dashes in Fig. 5). Similarly, the membrane
potential was increased by the input pulse applied to the excitatory synapse circuit. When
the IPSP fell below a certain threshold voltage, a spike was generated (box outlined by
dots in Fig. 5) because of the reduction of the shunting inhibition by the IPSC. The spike
current Ispike (≈100 nA) was five orders of magnitude larger than the resting current (≈1
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Fig. 6. Experimental results for the four-IFN network.

pA), and these two are thus very easily distinguished from each other.
Figure 6 shows experimental results for a four-neuron network. In these experiments,

external input values were encoded as either firing rate or spike timing. Encoding of the
external input as a firing rate means that the strength of the external input is equivalent to
the frequency of the train of identically-shaped voltage pulses Vin. Encoding of the external
input as spike timing code means that the strength is equivalent to the timing of spike
generation relative to the timing of its external periodic input.

The results for a firing-rate encoded input are shown in Fig. 6(a). The amplitudes of
the input current pulses |I(e)

in | were fixed at 100 nA. The frequencies of four periodic pulses
I

(e)
in,1, I

(e)
in,2, I

(e)
in,3, and I

(e)
in,4 were set at 200 kHz, 150 kHz, 100 kHz, and 50 kHz, respectively.

Because an IFN circuit inhibits each other through the global inhibitor, an IFN receiving
high-frequency input remained active, while those receiving low-frequency inputs became
inactive.

When inputs encoded as spike timings were applied to the same network, the network
exhibited a qualitatively quite different behavior, as shown in Fig. 6(b). Here, the external
input values are transformed into the initial delay times of the periodic input pulses. In
Fig. 6(b), the arrows show the timing at which each IFN received the input pulse. From
this, it can be seen that competition occurred in terms of the times at which the input pulse
reached the individual IFNs. This phenomena (“early arrival matters!”) simply comes from
the refractory period of the IFN circuits and lateral inhibition.

The next area of interest was the behavior of a large-scale IFN network in terms of
overcoming the problem of the noise tolerance. It is rather difficult to construct a large-scale
network of our prototype chips, because each chip includes only four IFN circuits. Therefore,
we conducted SPICE simulations of a large-scale network, using device parameters obtained
from the chip we fabricated.

Figure 7 shows typical results obtained from the simulation of a 100-IFN network with
firing-rate encoding. In the figure, the IFNs are represented by the neuron number labeled
from 0 to 99. Each neuron receives input pulses with an amplitude of 10 nA at a timing
represented by the circles in Fig. 7(a). The bias current Ib was set at 1 nA, while capacitors
C1, C2, C3, and C4 were set at 1 pF, 10 pF, 10 pF, and 1 pF, respectively. Each circle in
Fig. 7(b) represents the timing at which the i-th IFN circuit generated a spiking output
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Fig. 7. Results of simulation of a 100-IFN
network (firing-rate encoding).
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Fig. 8. Results of simulation of a 100-IFN
network (spike-timing encoding).

0

25

50

75

100

0 0.025 0.05 0.075 0.1

(b) output pulses (survivors)

ne
ur

on
 n

um
be

r
ne

ur
on

 n
um

be
r

0

25

50

75

100

0 0.025 0.05 0.075 0.1

time (s)

(a) input pulses with encoding as spike-timing

time (s)

Fig. 9. Results of simulation of a 100-IFN network with noise (spike-timing encoding).

Ispike of amplitude greater than 4.5 nA. As expected, those IFNs receiving high-frequency
inputs remained active, while those receiving low-frequency inputs became inactive.

The reaction of the same network to spike timing was also simulated. Figure 8(a) shows
the inputs with encoding as the spike timing. Those IFNs labeled by small numbers receive
early input pulses, while those IFNs labeled with large numbers receive later input pulses.
In this experiment, the first seven IFN circuits exhibited steady periodic responses, as is
visible in Fig. 8(b).

Figure 9 shows the result of a simulations in which the same network as was used to
produce Fig. 8 was exposed to a noisy periodic input. The amplitude of the noise was set
at 2 nA and its frequency was set at from one half to one-sixth of the periodic input. Six
of the seven survivors shown in Fig. 8 ceased to exhibit a steady periodic responses, while
some of the losers in the process of competition fired occasionally. Only the first survivor
showed a steady periodic response to the input. When the amplitude of the noise was set



at 1 nA, the seven neurons that had survived in Fig. 8 exhibited steady periodic responses,
while none of the losers fired. Although the amplitude of the noise is close to the order of
the amplitude of the periodic input, the noise did not affect the activity of survivors that
were distant from the border of losers. That is, an IFN receiving an input pulse earlier in
each oscillatory cycle had a higher probability of firing than one receiving a pulse later in
each oscillatory cycle. This implies that noise does not affect the essential features of the
timing mechanism.

IV. Summary

We have proposed and fabricated a simple integrate-and-fire neuron (IFN) circuit and
an inhibitory neural network consisting of a small number of IFN circuits. The IFN circuit
is designed to produce sequences of spikes in time according to the strengths of the signals
on its inhibitory and excitatory inputs. Results of experiment and simulation revealed that
the IFN circuits of the network exhibited competitive behavior in the frequency and time
domains. The frequency-domain competition was achieved by introducing analog inputs
that carried encoding in the form of the frequency of the firing rate, while competition in
the time domain was achieved by having inputs that carried encoding in the form of the
timing of spikes.

In the case of spike-timing encoding, an IFN circuit becomes a loser if it remains inactive
or ceases to fire within several oscillatory cycles of the onset of the train of input pulses.
Survivors exhibit steady periodic responses, while losers exhibit no activity. The distinction
between survivors and losers is thus obvious from the spiking activity in time of the IFNs.

In the case of firing-rate encoding, however, the distinction is not very obvious from the
activity in time. To determine the precise result of selection for activity or inactivity, mean
firing rates of activities must be recovered a sufficiently long time. If a short time interval
is used for averaging, the obtained firing rates do not reflect the relative intensity of the
stimuli. Thus the responses of survivors do not, in general, represent the precise order of
the stimuli. These observations lead us to conclude that the interpretation of the results
is immediate and clear for spike-timing encoding, but is time-consuming and ambiguous in
the case of a firing-rate encoding.
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