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Abstract - In this report, we present an inhibitory
neural network implemented on analog CMOS chips,
whose neurons compete with each other in the fre-
quency and time domains. The circuit for each neu-
ron was designed to produce sequences in time of
identically shaped pulses, called spikes. The results
of experiments and simulations revealed that the net-
work more efficiently achieved the selective activation
and inactivation of the neural circuits on the basis of
spike timing than on the basis of firing rates. The
results indicate that neural processing based on the
spike timing of neural circuits provides a possible way
to overcome the low-tolerance problems of analog de-
vices in noisy environments.

I. Introduction

Silicon circuits that mimic the nervous systems of in-
sects and other animals represent the future of neurocom-
puting [1]. They incorporate various neural functions by
replicating the microstructures of a nervous system (neu-
ral network) on a silicon chip. Analog VLSI is a key to
the implementation of large-scale neural networks. How-
ever, traditional models of neurons and neural networks
are not suitable for analog VLSI implementation due to
the need for computational accuracy; i.e., analog devices
have poor properties in terms of the matching and tem-
perature dependence of device characteristics, and they
have a low degree of tolerance to noisy environments.
Therefore it is essential to improve precision and repro-
ducibility at the device level by introducing redundancy
at the hardware neural-network level.

Although the precision, reliability, and noise properties
available in single neurons fall short of those in even the
most rudimentary analog VLSIs, the nervous system ex-
hibits marvelously accurate behavior. Recent physiolog-
ical and theoretical studies support the possibility that
accurate spike timing has a role in cortical processing
[2]; e.g., constant stimuli lead to imprecise spike trains,
whereas stimuli that include fluctuations produce spike
trains with timing reproduced to within 1 millisecond
[3]. The results indicate that a low level of intrinsic noise
in spike generation allows cortical neurons to accurately
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Fig. 1. Schematic image of the neuron model.

transform a synaptic input into a sequence of spikes.
Fukai showed that a network of inhibitory integrate-

and-fire neurons (IFNs) achieves a robust and efficient
neural competition on the basis of a novel timing mecha-
nism of neural activity [4]. We found that a network with
such a timing mechanism provides an appropriate basis
for the development of analog VLSI circuits that over-
come the problems of analog devices, namely the lack of
precision and reproducibility. In this report, we present
a novel analog IFN circuit that can be implemented eas-
ily on analog VLSIs. We show, by both experiments and
computer simulations, that a network of IFN circuits very
efficiently achieves a robust form of neural competition
that is based on spike timing rather than firing rates.

II. The IFN and Network Circuit

Figure 1 is a schematic image of a neuron model. The
neuron accepts input currents, I

(e)
in and I

(i)
in , through the

excitatory and inhibitory synapses, respectively. When
the input currents are integrated, the membrane poten-
tial Ui is produced at the soma. An excitatory input
increases the membrane potential, whereas an inhibitory
input decreases the potential. When the potential ex-
ceeds a threshold value, the neuron produces a current
pulse Ispike and the membrane potential is reset to its
resting value. This model is called the integrate-and-fire
neuron (IFN) [5].
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Fig. 2. The IFN circuit.
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Fig. 3. Inhibitory neural circuits using IFNs.

Figure 2 shows an IFN circuit constructed of analog
CMOS circuits. The circuit implements the excitatory
and inhibitory synapses of the neuron model as well as
the soma. The excitatory input current I

(e)
in produces the

excitatory postsynaptic potential (EPSP) in the excita-
tory synapse circuit. The membrane potential Ui is thus
increased by the excitatory postsynaptic current (EPSC)
that is produced by the EPSP. Similarly, the inhibitory
input I

(i)
in decreases the membrane potential through the

inhibitory postsynaptic current (IPSC) that is produced
by the inhibitory postsynaptic potential (IPSP). An in-
crease in the membrane potential induces an increase in
potential Vi. Thus, when the membrane potential ex-
ceeds a certain threshold voltage, input node P of the
membrane is suddenly shunted by transistor Ms. The
shunted current increases exponentially with the mem-
brane potential. This sudden increase in the current rep-
resents the spike generation. The output current Ispike is
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Fig. 4. Micrograph of the fabricated IFN chip.

obtained by transistor Mo.
The input current Iin and bias current Ib for the circuit

determine the magnitude of the spike and the duration of
the refractory period. If both the input current and the
bias current are less than 100 nA, the MOS transistors of
the IFN circuit operate in their subthreshold region [6],
where the IFN circuit consumes very little power (on the
order of 1 nW or less) but where the MOS transistors
are very sensitive to external noise. We are interested in
whether or not the IFN network is able to overcome this
noise sensitivity.

We constructed an inhibitory neural network in which
the IFN circuits are coupled to each other through all-
to-all inhibitory connections of equal strength. This cou-
pling reduces the complexity of the connection of N
neurons to O(N). Figure 3 shows the reduced network
consisting of N IFN circuits and a global inhibitor con-
structed of (N + 1) pMOS transistors. Each IFN circuit
accepts an intrinsic external input Vin. The nMOS tran-
sistors connected to the IFN circuits produce an excita-
tory input current I

(e)
in . The global inhibitor receives the

sum of the IFN outputs (
∑N

i Ispike,i). This total current
is copied in each IFN circuit to produce the inhibitory
input current I

(i)
in .

III. Results

We fabricated a prototype IFN chip using a 1.5 µm
CMOS process (MOSIS, vendor: AMI). Figure 4 is a
photograph of the chip, which contains four IFN circuits
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and one global inhibitor circuit. The capacitors C1, C2,
C3, and C4 were designed with a large capacitance due
to the limit on the time resolution of our measurement
systems. The capacitors took up a total area of 120 µm
× 200 µm.

Figure 5 shows experimental results for the fabricated
IFN circuit. The supply voltage was set at 5 V, and the
bias current Ib was set at 100 nA. In the experiment, pe-
riodic current pulses were applied to the excitatory and
inhibitory synapse circuits. When an input pulse was ap-
plied to the inhibitory synapse circuit, the membrane po-
tential Ui was decreased by the increase in the IPSP (see
box outlined by dashes in Fig. 5). Similarly, the mem-
brane potential was increased by the input pulse applied
to the excitatory synapse circuit. When the IPSP fell
below a certain threshold voltage, a spike was generated
(box outlined by dots in Fig. 5) because of the reduction
of the shunting inhibition by the IPSC. The spike current
Ispike (≈100 nA) was five orders of magnitude larger than
the resting current (≈1 pA), and these two are thus very
easily distinguished from each other.

Figure 6 shows experimental results for a four-neuron
network. In these experiments, external input values
were encoded as either firing rate or spike timing. En-
coding of the external input as a firing rate means that
the strength of the external input is equivalent to the fre-
quency of the train of identically shaped voltage pulses
Vin. Encoding of the external input as spike-timing code
means that the strength is equivalent to the timing of
spike generation relative to the timing of its external pe-
riodic input.
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Fig. 6. Experimental results for the four-IFN network.

The results for a firing rate encoded input are shown
in Fig. 6(a). The amplitudes of the input current pulses
|I(e)

in | were fixed at 100 nA. The frequencies of four pe-
riodic pulses I

(e)
in,1; I

(e)
in,2; I

(e)
in,3; and I

(e)
in,4 were set at 200

kHz, 150 kHz, 100 kHz, and 50 kHz, respectively. Be-
cause an IFN circuit inhibits each other through the
global inhibitor, an IFN receiving high-frequency input
remained active, while those receiving low-frequency in-
puts became inactive.

When inputs encoded as spike timings were applied to
the same network, the network exhibited a qualitatively
quite different behavior, as shown in Fig. 6(b). Here,
the external input values are transformed into the initial
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Fig. 7. Results of simulation of a 100-IFN network (firing-
rate encoding).

delay times of the periodic input pulses. In Fig. 6(b),
the arrows show the timing at which each IFN received
the input pulse. From this, it can be seen that compe-
tition occurred in terms of the times at which the in-
put pulse reached the individual IFNs. This phenomena
(“first come, first served” or “early arrival matters”) sim-
ply comes from the refractory period of the IFN circuits
and lateral inhibition.

The next area of interest was the behavior of a large-
scale IFN network in terms of improving its noise tol-
erance. It is rather difficult to construct a large-scale
network of our prototype chips, because each chip in-
cludes only four IFN circuits. Therefore, we conducted
SPICE simulations of a large-scale network, using device
parameters obtained from the chip we fabricated.

Figure 7 shows typical results obtained from the sim-
ulation of a 100-IFN network with firing-rate encoding.
In the figure, the IFNs are represented by neuron num-
bers, labeled from 0 to 99. Each neuron receives input
pulses with an amplitude of 10 nA at a timing repre-
sented by one of the circles in Fig. 7(a). The bias current
Ib was set at 1 nA, while capacitors C1, C2, C3, and C4

were set at 1 pF, 10 pF, 10 pF, and 1 pF, respectively.
Each circle in Fig. 7(b) represents the timing at which
the i-th IFN circuit generated a spiking output Ispike of
amplitude greater than 4.5 nA. As expected, those IFNs
receiving high-frequency inputs remained active, while
those receiving low-frequency inputs became inactive.
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Fig. 8. Results of simulation of a 100-IFN network (spike-
timing encoding).

The reaction of the same network to spike timing was
also simulated. Figure 8(a) shows the inputs with en-
coding as the spike timing. Those IFNs labeled by small
numbers receive early input pulses, while those IFNs la-
beled with large numbers receive later input pulses. In
this experiment, the first seven IFN circuits exhibited
steady periodic responses, as can be seen in Fig. 8(b).

Figure 9 shows the results of a simulation in which the
same network as was used to produce Fig. 8 was exposed
to a noisy periodic input. The amplitude of the noise
was set at 2 nA, and its frequency was set at one-half
to one-sixth of the periodic input. Six of the seven sur-
vivors shown in Fig. 8 ceased to exhibit steady periodic
responses, while some of the losers in the process of com-
petition fired occasionally. Only the first survivor showed
a steady periodic response to the input. When the am-
plitude of the noise was set at 1 nA, the seven neurons
that had survived in Fig. 8 exhibited steady periodic re-
sponses, whereas none of the losers fired. Although the
amplitude of the noise is close to the order of the ampli-
tude of the periodic input, the noise did not affect the
activity of survivors that were distant from the border of
losers. That is, an IFN receiving an input pulse earlier
in each oscillatory cycle had a higher probability of firing
than one receiving a pulse later in each oscillatory cy-
cle. This implies that noise does not affect the essential
features of the timing mechanism.

0-7803-7278-6/02/$10.00 ©2002 IEEE



0

25

50

75

100

0 0.025 0.05 0.075 0.1

(b) output pulses (survivors)

ne
ur

on
 n

um
be

r
ne

ur
on

 n
um

be
r

0

25

50

75

100

0 0.025 0.05 0.075 0.1

time (s)

(a) input pulses with encoding as spike-timing

time (s)

Fig. 9. Results of simulation of a 100-IFN network with noise
(spike-timing encoding).

IV. Summary

We have proposed and fabricated a simple integrate-
and-fire neuron (IFN) circuit and an inhibitory neural
network consisting of a small number of IFN circuits.
The IFN circuit is designed to produce sequences of
spikes in time according to the strengths of the signals
on its inhibitory and excitatory inputs. Results of ex-
periments and simulations revealed that the IFN circuits
of the network exhibited competitive behavior in the fre-
quency and time domains. The frequency-domain com-
petition was achieved by introducing analog inputs that
carried encoding in the form of the frequency of the firing
rate, while competition in the time domain was achieved
by having inputs that carried encoding in the form of the
timing of spikes.

In the case of spike-timing encoding, an IFN circuit be-
comes a loser if it remains inactive or ceases to fire within
several oscillatory cycles of the onset of the train of in-
put pulses. Survivors exhibit steady periodic responses,
while losers exhibit no activity. The distinction between
survivors and losers is thus obvious from the spiking ac-
tivity in the time of the IFNs.

In the case of firing-rate encoding, however, the dis-
tinction is not very obvious from the activity in time. To
determine the precise result of selection for activity or in-
activity, mean firing rates of activities must be recovered
for a sufficiently long time. If a short time interval is used

for averaging, the obtained firing rates do not reflect the
relative intensity of the stimuli. Thus the responses of
survivors do not, in general, represent the precise order
of the stimuli. These observations lead us to conclude
that the interpretation of the results is immediate and
clear for spike-timing encoding, but is time-consuming
and ambiguous in the case of firing-rate encoding.
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