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Abstract— In this report, we propose an analog neural oscil-
lator circuit for a locomotion controller in a quadruped walking
robot. Animal locomotion, such as walking, running, swimming
and flying, is based on periodic rhythmic movements. These
rhythmic movements are driven by the biological neural network,
called the central pattern generator (CPG). In recent years, many
researchers have applied CPG to the locomotion controller for
walking robots. However, most of the CPG controllers have been
developed with digital processors, and thus have several prob-
lems, such as high power consumption. Hence, we designed an
analog circuit as a neural oscillator underlying a CPG controller.
The proposed circuit is based on the Amari-Hopfield model,
which is suitable for analog circuit implementation because of
its simple transfer function. Furthermore, the proposed circuit
operates in the subthreshold region. As a result, it can reduce
power consumption. By numerical analysis, simulations and
experiments, the proposed circuit is shown to have the capability
to generate stable rhythmic patterns in noisy environments.

I. INTRODUCTION

Animal locomotion, such as walking, running, swimming
and flying, is based on periodic rhythmic movements. These
rhythmic movements are driven by the biological neural net-
work, called the central pattern generator (CPG) [1]. CPG con-
sists of sets of neural oscillators, situated in ganglion or spinal
cord. Induced by tonic inputs from command neurons, CPG
generates a rhythmic pattern of neural activity unconsciously
and automatically. As a result of such a rhythmic pattern acti-
vating the motor neurons, the rhythmic movements of animals
are driven. While not necessary for generating rhythmic move-
ments, sensory feedback regulates the frequency and phase of
these rhythmic patterns generated by CPG [2]. Furthermore,
CPG can adapt to various environments to change the periodic
rhythmic pattern itself[1]. For instance, vertebrates, such as
horses and cats, can change their locomotor patterns depend-
ing on the situation [3]. Since the coordination of physical
parts is required to achieve smooth locomotion, the rhythmic
movements driven by the CPG play one of the most important
roles in locomotion.

In recent years, many researchers have applied CPG to loco-
motion control in robotics [6]-[10]. For example, quadruped
robots capable of adaptating to irregular terrain using CPG
dynamics have been developed by Kimura et. al [6]. Billard
and Ijspeert have applied a CPG controller to an entertainment
robot, AIBO [7]. Shan and Nagashima have proposed a CPG
controller for a humanoid robot [8].

In robotics, using CPG for locomotion control has the
following advantages: i) The amount of calculation required
for movement control is reduced as a result of the coordination
of physical parts induced by the rhythmic movements, ii) As
a result of synaptic plasticity changing the structure of the
CPG and the rhythmic pattern, high autonomous adaptation to
various environments is achieved.

In this report, we propose an analog neural oscillator
circuit underlying a CPG controller. Although a number of
the CPG controllers have been developed, most of these
are implemented by using digital processors [6]-[8]. While
the digital processor can operate with high accuracy, it con-
sumes high power and requires a large area of a chip. Such
problems degrade the CPG controller. In order to overcome
such problems, we designed an analog circuit as a neural
oscillator underlying a CPG controller. Since the proposed
circuit operates in the subthreshold region, it can reduce power
consumption. Furthermore, we constructed a CPG controller
from the proposed circuit aiming at the coordination of physi-
cal parts in a quadruped walking robot. By numerical analysis,
experiments and simulations, we confirm the operation of the
proposed circuit.

II. NEURAL CONTROL OF RHYTHMIC MOVEMENTS

The rhythmic movements of animals, such as locomotion
and breathing, are driven by CPG. CPG generates a periodic
rhythmic pattern of nerve activity that activates motor neurons,
with the result that rhythmic movements of animals are driven.
The periodic rhythmic pattern of nerve activity can be regarded
as an attractor like a limit cycle, embedded in the network
structure of CPG. Characteristics of the rhythmic pattern as an
attractor contribute to the stability of the rhythmic movements.

In vertebrate locomotion, one of the most fundamental
roles of CPG is to control each limb. As a result of the
interaction with CPGs that actuate each of the joints, the
rhythmic movements of each limb are stabilized. Another role
is cooperation between the limbs, i.e., interlimb coordination.
Since the degree of freedom of the physical parts relevant to
locomotion is very high, the coordination of physical parts is
required to achieve smooth locomotion. Interlimb coordination
is induced by the periodic rhythmic movements driven by
CPG. Therefore, CPG can be said to play the central role
in locomotion.
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Fig. 1. The configuration of the Amari-Hopfield model

In the locomotion of mammals, transitions of the rhythmic
movements are often observed. As a typical example, the horse
has chosen a locomotor pattern called the gait. It is believed
that optimal gait pattern has been chosen based on locomotor
speed or the rate of energy consumption [3]. Such a transition
of rhythmic movements is also controlled by CPG. In addition,
each of the gait patterns, such as walk, trot and gallop, is
characterized by the relative phase between each limb. It is
considered that the transitions of the rhythmic movements are
performed as a result of the regulation of the relative phase by
CPG. Recently, it has been considered that substantial network
structure of CPG is changed because of the synaptic strength
being modulated by a neurotransmitter. As a result, CPG
regulates rhythmic movements and coordination of physical
parts is also changed.

III. THE CPG MODEL

In this section, we describe a CPG model underlying the
locomotion controller.

A. Neural Oscillator Model

A number of artificial neural networks have been proposed
as the CPG model [4]-[5]. In the earliest research, Brown
proposed the most fundamental CPG model using the neural
oscillator, which consists of two neurons and has interactions
between neurons by reciprocal inhibition [1]. The model is
also one of the relaxation oscillators. Although its configu-
ration is very simple, it is essential as the component of the
CPG model.

In the present work, we chose the Amari-Hopfield model
[12] as the neural oscillator. The model consists of an
excitatory neuron and an inhibitory neuron with excitatory
inhibitory connections (Fig. 1). The dynamics of the Amari-
Hopfield model is expressed by the following equations:

{
τ u̇ = −u + A·fµ(u) − C·fµ(v) + Su(t)

τ v̇ = −v + B·fµ(u) − D·fµ(v) + Sv(t)
(1)

where u and v express the activities of the excitatory neu-
rons and the inhibitory neurons, respectively. The parameters
A,B, C and D determine the dynamics of the model. Su(t)
and Sv(t) express the external inputs. The transfer function
f(x) is given by the following equation:

fµ(x) =
1 + tanh(µx)

2
(2)
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Fig. 2. The attractor of the Amari-Hopfield model in the u-v phase plane. (a)
The limit cycle: A = C = 10.0, B = 5.0, D = 0.0, Su = 0.0, Sv = −2.5
and µ = 1.0. (b) The stable equilibrium: A = C = 2.5, B = 2.5, D =
0.0, Su = 0.0, Sv = −1.25 and µ = 1.0.

where tanh(x) is the hyperbolic tangent function and µ is
its control parameter. The Amari-Hopfield model is suitable
for implementation of the CPG model as analog circuits
because of its simple transfer function. Its details are given
in the following section. Furthermore, the Amari-Hopfield
model corresponds to the Affine Transformation of the Wilson-
Cowan model, which imitates the population activities of
cortical neurons [13]. Therefore, the qualitative property of
both models is equivalent. The dynamics of both models have
been studied in detail. Depending on the parameters A through
D and the external inputs Su(t) and Sv(t), the Amari-Hopfield
model generates the periodic pattern automatically. Figures
2(a) and 2(b) show the dynamics of the Amari-Hopfiled model
in the u-v phase plane.

B. Neural network model

We composed a neural network model as the CPG controller
to perform interlimb coordination. As the CPG controller
for interlimb coordination, it is desirable to generate various
rhythmic patterns. Hence, we constructed a neural network
model from the Amari-Hopfield model according to the neural
network proposed by Nagashino et al [11]. Their model
consists of four coupled neural oscillators with excitatory and
inhibitory interneurons. As a result of introducing the interneu-
rons and controlling their interactions with neural oscillators,
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Fig. 4. The configurations of the networks correspond to the typical gait
patterns. (a) the walk mode. (b) the trot mode. (c) the gallop mode.

substantial network structure is changed and various rhythmic
patterns are generated [11].

Figure 3 shows the basic structure of the neural network
model. Here, we describe configurations of networks that
generate periodic rhythmic patterns corresponding to each
of the typical gaits of mammals. Figures 4(a), (b) and (c)
correspond to the walk mode, the trot mode and the gallop
mode, respectively [11].

By combining the networks that correspond to each of the
gait modes, we construct the entire network. The network
dynamics are given by the following equations:

τuu̇{0,1,2,3} = −u{0,1,2,3} + Afµ(u{0,1,2,3})

+Awfµ(u{2,3,1,0}
w ) + Agfµ(u{2,0,3,1}

g )

−Clrfµ(v{1,0,3,2}) − Cfhfµ(v{2,3,0,1})

−Cfµ(v{0,1,2,3}) + I{0,1,2,3}
u (t) (3)

τv v̇{0,1,2,3} = −v{0,1,2,3} + Bfµ(u{0,1,2,3})

−Dtfµ(v
{3,2,1,0}
t ) + I{0,1,2,3}

v (t) (4)

τwu̇{0,1,2,3}
w = −u{0,1,2,3}

w + Awfµ(u{0,1,2,3})

+I{0,1,2,3}
uw (t) (5)

τgu̇{0,1,2,3}
g = −u{0,1,2,3}

g + Agfµ(u{0,1,2,3})

+I{0,1,2,3}
ug (t) + I{0,1,2,3}

xg (t) (6)

τtv̇
{0,1,2,3}
t = −v

{0,1,2,3}
t − Dtfµ(v{0,1,2,3})

+I
{0,1,2,3}
vt (t) + I

{0,1,2,3}
xt (t) (7)

where the numbers correspond to each unit, u, uw and ug rep-
resent activities of the excitatory neurons, v and vt represent
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Fig. 5. The static response of the differential pair.

activities of the inhibitory neurons, τu, τv, τuw , τug and τvt are
the time constant of the neuros, A,Aw, Ag, B, C, Clr , Cfh and
Dt are the interaction parameters. Iu, Iv, Iuw , Iug and Ivt are
the tonic bias inputs, and Ixw and Iwg are the external inputs.

IV. THE CPG CONTROLLER

In this section, the neural oscillator circuit underlying the
CPG controller is described, and we construct the CPG con-
troller from the neural oscillator circuit.

A. Neural Oscillator Circuit
First, we describe the characteristics of the differential pair,

which is one of the most fundamental components of the neu-
ral oscillator circuit. The differential pair can approximate the
transfer function. When the MOS transistors, which comprise
the differential pair, operate in their subthreshold region, the
static response of the differential pair (Fig. 5) is given by the
following equation [14]:

Iµ(v) = Ib
1 + tanh(µ(v − vb))

2
(8)

where v is the input voltage, vb is the bias voltage, µ = κ/2VT ,
VT is the thermal voltage, Ib is the bias current and κ is the
device parameter.

The excitatory cell circuit is shown in Fig. 6(a). It consists
of the RC circuit, the differential pair and the current source.
The dynamics of the excitatory cell is given by the following
equation:

Cuu̇ = − u

Ru
+ Iu(t) (9)

where u expresses the voltage value, Cu is the capacitance
value, Ru is the resistance value and Iu(t) is the external
current. The excitatory cell outputs positive current according
to (8).

The inhibitory cell circuit is shown in Fig. 6(b). It also
consists of the RC circuit, the differential pair and the current
source. The dynamics of the inhibitory cell is given by the
following equation:

Cv v̇ = − v

Rv
+ Iv(t) (10)

where v expresses the voltage value, Cv is the capacitance
value, Rv is the resistance value and Iv(t) is the external
current. The inhibitory cell outputs negative current according
to (8).
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Fig. 6. The schematic of the inhibitory circuit.

The neural oscillator circuit is constructed from the
excitatory circuit and the inhibitory circuit (Fig. 7), and its
dynamics is given by rewriting (1) as follows:




Cuu̇ = − u

Ru
+ A·Iµ(u) − C·Iµ(v) + Iu(t)

Cv v̇ = − v

Rv
+ B·Iµ(u) + Iv(t)

(11)

where the parameters A through C are the same as in (1),
and Iµ(u) and Iµ(v) are the output currents of the differ-
ential pairs. The circuit generates periodic rhythmic patterns,
depending on the parameters A through C and the external
inputs Iu(t) and Iv(t).

B. The Network Circuit
We constructed the CPG network circuit from the neural

oscillator circuit. Here, we use the excitatory cell as the
excitatory interneurons and the inhibitory cell as the inhibitory
interneuros. Let us rewrite (3)-(7) as follows:

Cuu̇{0,1,2,3} = −u{0,1,2,3}

Ru
+ AIµ(u{0,1,2,3})

+AwIµ(u{2,3,1,0}
w ) + AgIµ(u{2,0,3,1}

g )

−ClrIµ(v{1,0,3,2}) − CfhIµ(v{2,3,0,1})

−CIµ(v{0,1,2,3}) + I{0,1,2,3}
u (12)

Cv v̇{0,1,2,3} = −v{0,1,2,3}

Rv
+ BIµ(v{0,1,2,3})

−DtIµ(v
{3,2,1,0}
t ) + I{0,1,2,3}

v (13)

Cwu̇{0,1,2,3}
w = −u

{0,1,2,3}
w

Ruw
+ AwIµ(u{0,1,2,3})

+I{0,1,2,3}
uw (14)

Cgu̇{0,1,2,3}
g = −u

{0,1,2,3}
g

Rug
+ AgIµ(u{0,1,2,3})

+I{0,1,2,3}
ug (15)

Ctv̇
{0,1,2,3}
t = −v

{0,1,2,3}
t

Rvt
− DtIµ(v{0,1,2,3})

+I
{0,1,2,3}
vt + I

{0,1,2,3}
xt (16)
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Fig. 7. The schematic of the neural oscillator circuit.
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Fig. 8. The bifurcation diagram of the Amari-Hopfield model.

where Iµ(·) is the output current of the differential pair. The
capacitance values Cu through Cvt, the resistance values Ru

through Rvt, and the interaction parameters A through Dt

correspond to those in equations (3)-(7). Iu, Iv, Iuw, Iug , Ivt

and Ixt are the DC bias currents. The ratio of the interaction
parameters is determined by the aspect ratio W/L (W: the gate
width, L: the gate length) of the transistors, which comprise
the current mirrors in the circuits. These values are determined
by the bias currents of the differential pairs. Depending on
interaction parameters A through Dt, the rhythmic pattern
corresponding to each gait pattern is generated.

V. RESULTS

In this section, we confirm the operation of the proposed
circuit.

A. Stability Analysis

In order to determine the interaction parameters of the
neural oscillator circuit, we examined the stability of the
periodic solution in the Amari-Hopfield model. By numerical
analysis using the dynamical system package AUTO [15], we
obtained the bifurcation diagram shown in Fig. 8. Here, in
order to simplify analysis, the parameters in (1) were set as
follows:

D = 0.0, Su = 0.0, Sv = B/2, µ = 1.0 (17)

Furthermore, we fixed the interaction parameters at A = C.
Generally, a stable periodic solution is created at Hopf

bifurcation. Therefore, we can obtain a stable periodic solution
as a result of setting the interaction parameters at the stable
region in the bifurcation diagram.
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B. Experiments

Depending on the interaction parameters determined by
the bifurcation diagram, the neural oscillator circuit is im-
plemented on the breadboard. We used the nMOS FET
(2SK1398) and pMOS FET (2SJ184) [16]. We set the inter-
action parameters at:

A = C = 10.0, B = 5.0, D = 0.0 (18)

The resistance values Ru and Rv were set at 1 MΩ, the
capacitance values Cu and Cv were set at 100 µF, the bias
currents Ib, Iu and Iv were set at (1.0, 2.5, 2.0) µA and the
bias voltage Vb was set at 2.5 V. The parasitic capacitance in
the breadboard can be ignored since it is fully smaller than
the capacitance values Cu and Cv.

We measured the voltage value u and v in the circuit. As
a result, we obtained the waveforms shown in Fig. 9. The
dynamics of the circuit in the u-v phase plane are shown
Fig. 10. Although additive noise existed (SNR: 30db), a stable
periodic pattern of the voltage u and v was obtained.

C. Simulations

We confirmed the operation of the network circuit through
computer simulation. In the following simulation, we used the
circuit simulator PSPICE and assumed 1.5-µm CMOS device
technology. As typical device parameters, I0 = O(10−16) A
and κ = 0.6 were assumed. As common parameters, the gate
length L = 1.5 µm, the capacitance values Cu, Cv, Cug, Cvt

and Cuw were set at (100, 100, 100, 100, 300) nF and the
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resistance values Ru, Rv, Ruw , Rug and Rvt were set at 1 MΩ.
The interaction parameters A,B, C,Clr and Cfh were set as
follows:

A = C = 4.0, B = 3.0, Clr = Cfh = 1.0

Furthermore, we set the bias currents in the differential pairs
Ib at 100 nA.

First, we confirmed the generation of the periodic rhythmic
patterns in the circuit. In particular, we show an example of
the rhythmic patterns generated by the circuit in Trot mode.
We set the parameters as follows:

Dt = 1.0, Aw = Ag = 0.0

where we cut off the output currents of the interneurons
uw and ug by using switch in order to set the interaction
parameters at 0. The bias voltage vb = 1.0 V, the bias currents
Ib = 100 nA, the bias currents Ik

u , Ik
v , Ik

uw, Ik
ug , and Ik

vt

(k = 0, 1, 2, 3) were set at (950, 550, 750, 750, 850) nA and
the bias currents I0

xt I1
xt I2

xt and I3
xt were set at (10, 0, 0, 10)

nA. The periodic rhythmic patterns of v{0,1,2,3} are shown in
Fig 11.

We confirmed the stability of the circuit in the Trot mode. In
Fig. 12, we introduce weak current (900 nA) as disturbance to
the circuit at 5.05 sec to 5.10 sec. The circuit is stable against
this disturbance. It is assumed that this stability is provided by
the characteristics of the rhythmic patterns as the attractor of
the network. If disturbance is considered to be an input from
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a sensory neuron, the phase of the periodic pattern would be
regulated by sensory feedback.

D. Discussion

As a result of numerical analysis, simulations and ex-
periments, we confirmed the performance of the proposed
circuit. In particular, we confirmed that the proposed circuits
are stable against additive noise and weak disturbance. This
characteristic is suitable for the CPG controller in a quadruped
walking robot.

VI. CONCLUSION

In this paper, we proposed an analog neural oscillator circuit
for a locomotion controller in a quadruped walking robot. The
proposed circuit is based on the biological neural network,
called CPG. In recent years, many researchers have applied
CPG to locomotion controllers in robotics. However, most
of the CPG controllers have been developed using digital
processors that have several problems, such as high power
consumption. In order to improve such problems, we designed
an analog neural oscillator circuit underlying the CPG con-
troller. The proposed circuit is based on the Amari-Hopfield
model, which is suitable for analog circuit implementation
because of its simple transfer function. Therefore, the circuit
consists of the most fundamental analog circuit, such as the
differential pair, the current mirror and the RC circuit. Since
MOS transistors, which comprise the proposed circuit, operate
in their subthreshold region, it can reduce power consumption.
Furthermore, we construct the CPG controller from the neural
oscillator circuit, aiming at the interlimb coordination of a
quadruped walking robot.

By numerical analysis, computer simulations and experi-
ments, we confirmed the operation of the proposed circuit. As
a result, it is shown that the proposed circuit has the capability
to generate stable rhythmic patterns in noisy environments.

Our future work will aim to develop an analog CPG
controller for an autonomous micro locomotor robot.
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