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Abstract— A compact complementary metal-oxide semiconduc-
tor (CMOS) circuit for depressing synapses is designed for
demonstrating applications of spiking neural networks for
contrast-invariant pattern classification and synchrony detection.
Although the unit circuit consists of only five minimum-sized
transistors, they emulate fundamental properties of depressing
synapses. The results of the operations are evaluated by both
experiments and simulation program with integrated circuit
emphasis (SPICE).

I. I NTRODUCTION

Silicon circuits that mimic the nervous systems of insects
and other animals represent the future of neurocomputing.
They can perform various neural functions because the mi-
crostructures of a nervous system are replicated on their silicon
chips. A number of neural chips have been developed; e.g.,
silicon neurons that emulate cortical pyramidal neurons [1],
FitzHugh-Nagumo neurons with negative resistive circuits [2],
and artificial neuron circuits based on by-products of con-
ventional digital circuits [3], [4], [5]. Since recent functional
models of spiking neural networks tend to use integrate-and-
fire neurons (IFNs), neuromorphic engineers have developed
hardware neural systems with several types of IFN circuits to
investigate the effect of spike timing and synchrony on the
network’s computational properties.

In addition to the IFNs, dynamic synapses have also at-
tracted the attention of neuromorphic engineers who focus
mainly on the dynamic implications of the neurons. Senn
showed that an easy way to extract coherence information
among cortical neurons by projecting spike trains through
depressing synapses onto a postsynaptic neuron [6]. Moreover,
a recent model of the layer IV circuitry, which accounts for
several contrast-dependent nonlinearities in cortical responses,
suggests that synaptic depression contributes to solving the
problem of contrast-invariant orientation tuning [7]. Based on
this suggestion, Bugmann showed that the strength of a time-
averaged current injected into the soma by using a spike train
is independent of its frequency, which implies that the response
strength of a target neuron depends only on the number of
active inputs [8].

Several CMOS circuits that emulate dynamic synapses have
been developed [9], [10]. These circuits employed capaci-
tors to obtain temporal properties of the dynamic synapse,
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Fig. 1. Depressing synapse circuit that consists of five minimum-sized
transistors and a parasitic capacitance.

which prevents us from large-scale implementation of synaptic
circuits for practical applications. In this paper, we propose
a compact CMOS circuit that emulate depressing properties
of dynamic synapses. The circuit consists of five transistors
without capacitors. We also exhibit network circuits imple-
menting the Bugmann’s model for contrast-invariant pattern
classification [8] and Senn’s model for synchrony detection
[6], to demonstrate the properties of our synaptic circuit.

II. A NALOG CMOS CIRCUIT FOR DEPRESSINGSYNAPSE

A synapse whose conductivity changes based on the firing
rate or spike timing of presynaptic neurons is called a dynamic
synapse [11], [12]. The change in weight of dynamic synapses
is caused by short-term changes in the transmitter discharge
and regeneration cycle at the terminal of presynapses rather
than by learning on a network level. These synapses pro-
duce excitatory postsynaptic potential (EPSP) and inhibitory
postsynaptic potential (IPSP) by integrating the output of the
presynaptic neurons. A signal is conducted to a postsynaptic
neuron through EPSP and IPSP. When the firing rate of the
presynaptic neurons increases so that the sequential changes in
EPSP and IPSP can no longer follow the input, the efficiency
of signal conduction to the postsynaptic neurons drops. Thus,
this synapse behaves as a low-pass filtering device. Because
presynaptic neuron output is depressed and conducted to the
postsynaptic neurons, such a synapse is called a “depressing
synapse” and a synapse acting inversely is called a “facilitating
synapse”.
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Fig. 2. IC layout of the depressing synapse circuit (a total area of 35µm
× 36 µm with a 1.5-µm scalable CMOS rule).

Figure 1 shows our MOS circuit for such a depressing
synapse constructed by a current mirror (M3 and M5) and
pMOS common-source amplifier (M2 and M4). When there is
no input (Iin = 0), voltageVe at junctionA is zero because of
leak transistor M2. Therefore, transistor M1 is in an on state.
When there is input (Iin > 0) that increasesVe, M1 enters
an off state. Therefore, the current is mirrored to outputIout

through transistor M1.
Because there is parasitic capacitanceCe at junctionA, the

increase inVe has a short-time delay. Therefore, M1 enters
an on state for a short time, and the circuit outputs pulsive
current Iout. When the input current becomes zero again,
M2 discharges the capacitanceCe, and Ve returns to zero.
Remarkably, the Mirror effect of thepMOS common-source
amplifier, which amplifies the value of additional parasitic
capacitance between the drain and gate terminal of M2,
increases this discharging time.

Now assume that the pulsive current (spike) is given at
a short interval, and that subsequent spikes enter beforeVe

returns to zero. In this case, the amplitude of the output spikes
decreases whenVe increases. Because the current of transistor
M2 increases monotonically whenVbias increases, the time
until Ve returns to zero decreases. By adjusting voltageVbias,
it is thus possible to change the time of the depression. Note
that, whenVbias is set at VDD, the circuit behaved as a
nondepressed synapse becauseVe is zero and M1 is always
in an on state.

III. E XPERIMENTAL AND SIMULATION RESULTS

We fabricated a prototype circuit using a 1.5-µm scal-
able CMOS rule (MOSIS, vendor: AMIS,n-well single-poly
double-metal CMOS process). Figure 2 shows a layout of the
depressing-synapse circuit. The circuit took up a total area of
35 µm × 36 µm.

Figure 3 shows time courses of the output of the synapse
circuit for increasing input-spike intervals. The experimental

0.1 0.20

5

4

5

2.5

0
1

0.5

0

V
in

(V
)

V
e

(V
)

V
ou

t(
V

)

time (s)

(b)

(c)

(a)

Fig. 3. Experimental results of depressing synapse circuit; (a) successive
spike inputs, (b) the degree of synaptic depression, and (c) its outputs.
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Fig. 4. Changes in amplitude of the output of depressing synapse circuit
against the firing rate of presynaptic neuron.

conditions were VDD = 5 V,Vbias = 0.1 V, input spike width
= 0.1 ms and spike amplitude = 1µA. A load resistance of
100 MΩ was connected between the output terminal of the
circuit and ground to obtain the output currentIout as the
voltageVout. Figure 3(a) shows input voltageVin of transistors
M3 ∼ M5 that decreases from 5 V to 3.7 V when the spike
current is given. The first spike was given att = 0. Subsequent
spikes were given att = 10, 30, 60 and 120 ms. When the
inputs were given successively in a short time (around 0 to
30 ms in Fig. 3(a), the amplitude of the output pulse was
depressed [Fig. 3(c)]. As the interval widened,Ve approached
zero [Fig. 3(b)], and the amplitude of the output pulse returned
to the initial value.

Figure 4 shows the change in amplitude of the output spike
against the input firing rate. The leak voltageVbias was set
at 0.1, 0.2, and 0.3 V. As the spike frequency increases, the
amplitude of the output pulse decreased. By increasingVbias,
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Fig. 5. Experimental setups for pattern classification and synchrony detection.

the cutoff frequency was successfully shifted toward the higher
frequency.

In the following subsections, we show applications of the
proposed circuit to spiking neural networks for contrast-
invariant pattern classification and synchrony detection. Al-
though these networks are designed to be useful when large
number of depressing synapses are employed, we constructed
small-scale circuits to demonstrate only fundamental prop-
erties of the hardware neural networks. Since our circuit
occupies an area of 35µm × 36 µm even if we use 1.5-µm
CMOS process, its large-scale implementation is remarkably
easy.

A. Application to the Bugmann’s Neural Network for
Contrast-Invariant Pattern Classification

Bugmann showed that the strength of a time-averaged
current injected into the soma by using a spike train tends
to be independent of its frequency, which implies that the
response strength of a target neuron depends only on the
number of active inputs [8]. We here demonstrate it by using
our depressing synapse circuits.

Let us assume a simple circuit, as shown in Fig. 5. The
circuit is designed based on the construction of Bugmann’s
neural network. The right part represents a leaky IFN and
the left part represents its dendrite. The IFN consists of a
membrane capacitance (C1), a diode-connected leak MOS
transistor and a threshold detector (Vth). The IFN accepts spike
inputs from excitatory neurons through depressing synapses.
The IFN outputs a spike when its EPSP> Vth, and resets
the EPSP after the firing. In this setup, average values of
the EPSP increases in proportion to the number of presy-
naptic active neurons. Therefore, it can detect the number of
presynaptic active neurons by setting appropriate thresholdVth

corresponding to the number of active neurons. On the other
hand, the EPSP also increases in proportion to firing rate of
spiking neurons. Therefore, the performance to discriminate
the number of presynaptic active neurons largely deteriorates
if the firing rate is not constant value.

It is shown that this discrimination performance is improved
by using the depressing synapse [8]. If input spikes are given
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Fig. 6. Changes in EPSP of IFN against the number of active presynaptic
neuron and their firing rates.
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Fig. 7. Results for dependence of IFN on the firing rate of presynaptic
neurons (4 neurons).

to the depressing synapse successively in a short period, the
efficiency to increase the EPSP per spikes drops. Even if the
number of input spikes increases with the increase in firing
rate, the value of EPSP does not change greatly because the
efficiency per spike is lowered by the synaptic depression.
Namely, the discrimination performance of the network tends
to be independent of firing frequency. To demonstrate this,
we construct a network in which four synapse circuits are
connected to the IFN circuit. We compared the operation of the
neuron circuit with nondepressed- and depressed circuit as the
number of active presynaptic neurons increases (Fig. 6). In the
figure,N represents the number of active inputs. In case of the
nondepressed synapse (Vbias = 5 V, and it is labeled as NDS in
the figure), average value of the EPSP increased monotonically
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Fig. 8. Large-scale simulation results (100 neurons) for the same experiments
shown in Fig. 7.

as the firing rate of postsynaptic neurons increased. The value
also increased asN increased. On the other hand, in case of
the depressed synapse (Vbias = 0.2 V, and it is labeled as DS in
the same figure), the EPSP increased nonmonotonically as the
firing rate of postsynaptic neurons increased. Now, we define
the firing threshold of the IFN asVth = 1.8 V. The firing
rates when the EPSP exceeded the threshold to the number of
active neurons were plotted in Fig. 7 for both depressed (DS)
and nondepressed (NDS) synapse circuits. The result indicates
that the dependence of the postsynaptic neuron with depressed
synapses on presynaptic firing rates is smaller than that of
nondepressed synapses.

This difference becomes more apparent whenN increases.
To confirm it in a large-scale network, SPICE simulation was
conducted for the network having 100 synapses. As input,
pulse with pulse amplitude of 1 nA and pulse width of 10
µs was given. The time constant of postsynaptic neuron was
set around 2 ms. The threshold was set at the value of the
EPSP produced by 70 active neurons with a firing frequency
of 5 kHz. The values of thresholdVth were 0.2 V when the
depressing synapse was used and 2.0 V when conventional
synapse was used. The result is shown in Fig. 8. The firing rate
when the EPSP exceeded the threshold to the active neuron
for the first time were plotted.

Let us assume that presynaptic active neurons are arranged
on 2D rectangular grid and forms some patterns; e.g., “E”, “L”
or “-”, and “E” is with 90 active neurons, “L” with 50, and
“-” with 10. Then, suppose that the firing rate of the active
neurons represents the “contrast” strength of these patterns. If
there is little dependence on the presynaptic firing rates, the
neuron can classify these patterns independent of their contrast
strength. The result shown in Fig. 8 indicates that in using
depressing synapse, correct classification can be achieved for
all patterns.
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Fig. 9. Responses of EPSP for single burst input (a) via nondepressed (b)
and depressed synapse circuit (c).

B. Application to the Senn’s neural network for synchrony
detection

Senn showed that an easy way to extract coherence informa-
tion among cortical neurons by projecting spike trains through
depressing synapses onto a postsynaptic neuron [6]. We here
demonstrate it by using our depressing synapse circuits.

Let us consider the same IFN as shown in Fig. 5. We here
employ burst neurons as inputs to the IFN, as in the Senn’s
original work. Duging a burst input, the output current of the
depressing synapse circuit rapidly decreases for successive
spikes due to the increase ofVe and its slow recovery. But
during a nonbursting period,Ve has time to be 0, and this
results in a strong EPSP at the onset of the next burst. If we
compare this dynamic response with that for a nondepressed
synapse evoking on average the same EPSP, the depressed
synapse will have a larger response at the burst onset and a
smaller response toward the end of the bursts.

Figure 9 show the response of the EPEP with bursting inputs
(a) for a nondepressed synapse (b) and depressed synapse
circuit (c). Amplitudes of bursting spike inputs were set at
1 µA for depressing synapses and 600 pA for nondepressed
synapses, which evoked on average the same EPSP (50 mV).
This result ensures that the EPSP caused by the depressed
synapse circuit has a larger response at the burst onset, as
compared with nondepressed synapse circuit.

Now we demonstrate that the depressing synapse circuit is
able to detect the synchrony in the burst times. We employ
two bursting neurons as the input of the IFN that receive
the burst inputs through depressed or nondepressed synapses.
Figures 10 and 11 show the results. When the input bursts
are not synchronized [Figs. 10(a) and (b)], the peak EPSPs
evoked by nondepressed [Figs. 10(c)] and depressed synapses
[Figs. 10(d)] were both around 0.1 V. But, when the input
bursts are synchronized [Figs. 11(a) and (b)], the peak EPSP
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Fig. 10. Responses of EPSP for asynchronous burst inputs [(a) and (b)] via
nondepressed (c) and depressed synapse circuit (d).

evoked by depressed synapses [Figs. 11(d)] was significantly
larger than the nodepressed synapses [Figs. 11(c)]. Therefore,
defining an appropriate thresholdVth of the IFN; e.g.,Vth

= 130 mV in the experiments, the IFN with the depressing
synapse circuit can fire when the burst inputs are synchronized.

Next, we simulated the output of 100 neurons by random
spike trains (Fig. 12a). According to [6], there is experimental
evidence to assume that before and during the tone, auditory
cortical neurons fire in short bursts with bursts of three to four
spikes within 40-50 ms, repeated every 200-250 ms. During
the tone, the burst onsets are assumed to be synchronized
within groups of 70 neurons that are randomly assembled anew
for each burst. In our simulations, the overall firing rate of the
population remains constant, apart from the short onset and
offset of the tone when most cells burst together because the
bursting times of the groups alternate during the ongoing tone
(see Fig. 12b).

Applying a tone stimulus (20-45 ms in Fig. 12), the neurons
respond at the onset and offset. They correlate their bursts only
among randomly assembled subgroups during the stimulus.
Since the mean firing rate is on the background level during the
tone (Fig. 12b), a postsynaptic neuron gathering the input spike
trains through nondepressed synapses would respond only
at the stimulus onset and offset. With depressing synapses,
however, the postsynaptic neuron detects the correlated bursts
and fires during the tone as well (Figs. 12c and 12d), as shown
in the Senn’s original work.

To investigate noise tolerance of Senn’s network with the
proposed circuits, we simulated the 100 neuron network with
random-scattering devices. In this simulation, the threshold
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Fig. 11. Responses of EPSP for asynchronous burst inputs [(a) and (b)] via
nondepressed (c) and depressed synapse circuit (d).

voltage of each MOS transistor was scattered by Gaussian
noise with standard deviationσ. To evaluate the noise tol-
erance, we counted the number of spikes of the presynaptic
neuron during bursting and non-bursting period (Fig. 13).
Ideally, the postsynaptic neuron must not fire during non-
bursting period but must fire during bursting period, for the
task of synchrony detection. The difference between the num-
ber thus represent the performance of this task. The number
of postsynaptic spikes increased as the increase ofσ during
bursting period. On the other hand, whenσ > 25 mV, the
postsynaptic neuron started firing suddenly. Namely, the per-
formance of synchrony detection did not change significantly
by the increase ofσ as long asσ < 25 mV. Remarkably, the
difference (∼ performance of synchrony detection) changed
nonmonotonically as the increase ofσ, as shown in Fig. 14.

IV. CONCLUSION

We designed and fabricated an electronically implemented
depressing synapse. The circuit was designed by using only
five minimum-sized transistors, and did not use any capacitor
to make its temporal property. As the result, the circuit took up
a total area of 35µm× 36 µm with a 1.5-µm scalable CMOS
rule (MOSIS, vendor: AMIS, n-well single-poly double-metal
CMOS process). By using the synapse circuit, we demon-
strated two functional neural networks performing contrast-
invariant pattern classification and synchrony detection. The
results indicated that the depressing synapse circuit worked
well on these networks in actual environment with realistic
configurations, and suggested further potential applications
to large-scale spiking neural networks with depressed and
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nondepressed synapses.
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