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Abstract— We designed a simple neural segmentation model
that is suitable for analog circuit implementation. The model
consists of excitable neural oscillators and adaptive synapses,
where the learning is governed by a symmetric spike-timing
dependent plasticity (STDP). We numerically demonstrate basic
operations of the proposed model as well as fundamental circuit
operations using a simulation program with integrated circuit
emphasis (SPICE).

I. I NTRODUCTION

Humans can distinguish multiple sensory sources that
coincide. Recent discoveries of synchronous oscillations in
the visual and auditory cortex have triggered much interest
in exploring oscillatory correlation to solve the problems
of neural segmentation. Many neural models that perform
segmentation have been proposed, e.g., [1], [2], [3], but they
are often difficult to implement on practical integrated cir-
cuits. Recently, a neural segmentation model called LEGION
(Locally Excitatory Globally Inhibitory Oscillator Networks)
[4] has been attracting attention because it is easy to imple-
ment on circuits. However, not including learning of neurons,
under certain conditions the LEGION model does not work.
In this paper, we present a simple neural segmentation
model that is suitable for analog complementary metal-oxide-
semiconductor (CMOS) circuits and that includes learning.

The segmentation model is suitable for applications such
as figure-ground segmentation and the cocktail-party effect,
among others. The model consists of mutually coupled
neural oscillators exhibiting synchronous (or asynchronous)
oscillations. All the neurons are coupled with each other
through positive or negative synaptic connections. Each
neuron accepts external inputs, e.g., sound inputs in the
frequency domain, and oscillates (or does not oscillate)
when the input amplitude is higher (or lower) than a given
threshold value. Our basic idea is to strengthen (or weaken)
the synaptic weights between synchronous (or asynchronous)
neurons, which may result in phase-domain segmentation.
The synaptic weights are updated based on symmetric spike-
timing dependent plasticity (STDP) using Reichardt’s corre-
lation neural network [5] which is suitable for analog CMOS
implementation.
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Fig. 1. Network construction of segmentation model.
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Fig. 2. Nullclines and trajectories of single neural oscillator.

In the following sections, we introduce our segmentation
model and demonstrate the operations through numerical
simulations. Then we present unit CMOS circuits for our
model and demonstrate the operations using a simulation
program with integrated circuit emphasis (SPICE).

II. T HE MODEL AND BASIC OPERATIONS

Our segmentation model is illustrated in Fig. 1. The
network hasN neural oscillators consisting of the Wilson-
Cowan type activator and inhibitor pairs (ui and vi) [6].
All the oscillators are coupled with each other through
resistive synaptic connections, as illustrated in the figure. The
dynamics are defined by

τ
dui

dt
= −ui + fβ1(ui − vi) +

N∑
j 6=i

W uu
ij uj , (1)

dvi

dt
= −vi + fβ2(ui − θi) +

N∑
j 6=i

W uv
ij uj , (2)
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Fig. 3. Reichardt’s correlation neural network.

where τ represents the time constant,N the number of
oscillators,θi the external input to thei-th oscillator.fβi(x)
represents the sigmoid function defined byfβi(x) = [1 +
tanh(βix)]/2, W uu

ij the connection strength between thei-
th andj-th activators andW uv

ij the strength between thei-th
activator, and thej-th inhibitor. The nullclines of a single
oscillator (W uu

ij = W uv
ij = 0) for different θs (0.1 and 0.5)

and trajectories forθ = 0.5 are shown in Fig. 2. The rest of
the parameters were set atτ = 0.1, β1 = 5 and β2 = 10.
Models whose dynamics are described by Eqs. (1) and (2),
are suitable for implementation in analog VLSIs becuase the
sigmoid function can be implemented in VLSIs by using
differential-pair circuits.

According to the stability analysis in [6], thei-th oscillator
exhibits excitable behaviors whenθi < Θ whereτ ¿ 1 and
β1 = β2 (≡ β), whereΘ is given by

Θ = u0 −
2
β

tanh−1(2v0 − 1), (3)

u0 ≡
1 −

√
1 − 4/β

2
,

v0 ≡ u0 −
2
β

tanh−1(2u0 − 1),

and exhibits oscillatory behaviors whenθi ≥ Θ, if W uu
ij and

W uv
ij for all i and j are zero.
Suppose that neurons are oscillating (θi ≥ Θ for all i)

with different initial phases. The easiest way to segment these
neurons is to connect the activators belonging to the same (or
different) group with positive (or negative) synaptic weights.
In practical hardware, however, the corresponding neuron
devices have to be connected by special devices having both
positive and negative resistive properties, which prevents
us from designing practical analog circuits. Therefore, we
simply use positive synaptic weights between activators and
inhibitors, and do not use negative weights. When the weight
between thei-th and j-th activators (W uu

ij ) is positive and
W uv

ij is zero, thei-th andj-th activators will be synchronized.
Contrarily, when the weight between thei-th activator and
the j-th inhibitor (W uv

ij ) is positive andW uu
ij is zero, the

i-th andj-th activators will exhibit asynchronous oscillation
because thej-th inhibitor (synchronous to thei-th activator)
inhibits thej-th activator.

The synaptic weights (W uu
ij andW uv

ij ) are updated based
on our assumption; one neural segment is represented by
synchronous neurons, and is asynchronous with respect to
neurons in the other segment. In other words, neurons should
be correlated (or anti-correlated) if they received synchronous
(or asynchronous) inputs. These correlation values can easily
be calculated by using Reichardt’s correlation neural network
[5] which is suitable for analog circuit implementation [7].
The basic unit is illustrated by thick lines and circles in
Fig. 3(a). It consists of a delay neuron (D) and a correlator
(C). A delay neuron produces blurred (delayed) outputDout

from spikes produced by activatoru1. The dynamics are
given by

d1
dDout

dt
= −Dout + u1, (4)

whered1 represents the time constant. The correlator accepts
Dout and spikes produced by activatoru2 and outputsCout =
Dout×u2. The conceptual operation is illustrated in Fig. 3(b).
Note that Cout qualitatively represents correlation values
between activatorsu1 andu2 becauseCout is decreased (or
increased) when∆t, inter-spike intervals of the activators, is
increased (or decreased). Since this basic unit can calculate
correlation values only for positive∆t, we use two basic
units, which we call a unit pair, as shown in Fig. 3(a). The
output (U ) is thus obtained for both positive and negative∆t
by summing the twoCouts. Through temporal integration
of U , we obtain impulse responses of this unit pair. The
sharpness is increases asd1 → 0. Two impulse responses
for small and larged1 (red and blue curves) are plotted
in Fig. 3(c). Introducing two unit pairs with different time
constants, i.e.,d1 andd2 (À d1), one can obtain those two
impulse responses (U andV ) simultaneously. The weighted
subtraction (U − αV ) produces well-known Mexican hat
characteristics, as shown in Fig. 3(d). We use this symmetric
characteristic for the weight updating as a spike-timing
dependent plasticity (STDP) in the oscillator network.

A schematic of our learning circuitry is shown in Fig. 4.
The two unit pairs are located between two activatorsu1

and u2. The weighted subtraction (U − αV ) is performed
by interneuronW . According to our above assumptions for
neural segmentation, whenU−αV is positive, the weight be-
tween activatorsu1 andu2 (illustrated by a horizontal resistor
symbol in Fig. 4) is increased because the activators should
be correlated. On the other hand, whenU −αV is negative,
the weight between activatoru1 and inhibitorv2 (illustrated
by a slant resistor symbol in Fig. 4) is increased because
activatorsu1 and u2 should be anti-correlated. To this end,
the output of interneuronW is given to two additional
interneurons (fuu andfuv). The input-output characteristics
of these interneurons are shown in Figs. 4(a) and (b). Namely,
fuu (or fuv) increases linearly when positive (or negative)
U − αV increases, but is zero whenU − αV is negative
(or positive). Those positive outputs (fuu andfuv) are given
to the weight circuit to modify the positive resistances. The
dynamics of the “positive” weight between activatorsui and
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Fig. 4. STDP learning circuitry.
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Fig. 5. Numerical simulation results.

uj is given by

dW uu
ij

dt
= −W uu

ij + fuu, (5)

and the “positive” weight between activatorui and inhibitor
vj is

dW uv
ij

dt
= −W uv

ij + fuv. (6)

We carried out numerical simulations withN = 6, τ =
0.1, β1 = 5, β2 = 10, d1 = 2, d2 = 0.1 and α = 1.2.
Time courses of activatorsui (i = 1 ∼ 6) are shown in Fig.
5. Initially, the external inputsθi (i = 1 ∼ 6) were zero
(< Θ), but θi for i = 1 ∼ 3 and i = 4 ∼ 6 were increased
to 0.5 (> Θ) at t = 10 s and 20.9 s, respectively. We
observed thatu1∼3 andu4∼6 were gradually desynchronized
without breaking synchronization amongst neurons in the
same group, which indicated that segmentation of neurons
based on the input timing was successfully achieved.

(a) (b)

+
V

+

-
+

-

θ

u

vV

C
1

m
1

m
2

m
3

Fig. 6. Unit circuits for neural segmentation; (a) differential amplifiers and
(b) neural oscillator
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Fig. 7. Nullclines and trajectory forθ = 2.5 V obtained from circuit
simulations.

III. CMOS UNIT CIRCUITS AND OPERATIONS

Our Wilson-Cowan based neural oscillators have been
implemented in [6]. The oscillator uses standard differential
amplifiers shown in Fig. 6(a) which consists of a differential
pair (+ and -), a current mirror (m1 and m2) and a bias
transistor (m3). The construction of an entire neural oscillator
including additional capacitorC1 is illustrated in Fig. 6(b).
The simulated nullclines of a single neuron circuit for
different θs (0.5 V and 2.5 V) and trajectories forθ = 2.5
V with C1 = 10 pF andVref = 2 V are shown in Fig. 7.
Transient simulation results of the neuron circuit are shown
in Fig. 8. Time courses of the activator unit (u) are shown.
Initially, θ was set at 0.5 V (in relaxing state), andu did not
oscillate. Thenθ was increased to 2.5 V att = 0.1 ms, and
u exhibited stiff oscillations. Again,θ was set at 0.5 V at
t = 0.3 ms. Sinceu had been excited before this time, the
neuron emitted one spike and then relaxed, as expected.

A circuit implementing Reichardt’s basic unit shown in
Fig. 3(a) is shown in Fig. 9. For practical purposes, we
added two limiters that convert voltage pulses ofu1 and
u2, which vary from 0 toVdd, into subthreshold current
pulses. Bias currentI1 drives m4 and m5. Transistor m6 is
thus biased to generateI1 because m4 and m6 share the
gates. When m7 is turned on (or off) by applyingVdd (or
0) to u1, I1 is (or is not) copied to m8. Transistors m8
and m9 form a current mirror, whereas m9 and m10 form
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Fig. 8. Simulation results of neural oscillator.
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Fig. 9. STDP circuit.

a pMOS source-common (inverting) amplifier whose gain
is increased asVb1 → 0. Since parasitic capacitanceC2 is
significantly amplified by this amplifier, temporal changes
of u1 are blurred on the amplifier’s output (Dout). Therefore
this “delayer” acts as a delay neuron in Fig. 3(a). A correlator
circuit consists of a pMOS differential pair (m11 and m12)
and a bias transistor (m13). Whenu2 = Vdd (or zero),I2 is
(or is not) copied to m13 through m15 to m18, as explained
above. Therefore, output currentIout is obtained only when
u2 = Vdd. Under this condition,Iout is proportional to
Dout−Vb2 for small|Dout−Vb2|. This operation corresponds
to that of a correlator in Fig. 3(a).

We carried out circuit simulations of the above circuits.
The parameter sets we used for the transistors were obtained
from MOSIS AMIS 1.5-µm CMOS process. Transistor sizes
of m1, m2, m3, m13 and m14 were fixed atL = 16 µm and
W = 4 µm to construct accurate current mirrors. Sizes of
the resting transistors were set atL = 1.6 µm andW = 4
µm. The supply voltage was set at 5 V.

Simulation results of our STDP circuits are shown in Figs.
10 and 11. In Fig. 10, ideal current pulses (amplitude: 100
nA, pulse width: 10 ms) were used instead of limiters as
shown in Fig. 9. ParametersC2, Vb1 and Vb2 were set at
100 fF, -0.2 V and 3.7 V, respectively. The value ofVb2 was
set at the intermediate value betweenm11’s maximum and
minimum gate voltage, and this makes the differential pair’s
output vary the most. The value ofVb1 was chosen so that
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the delayer makes a reasonable delay. Horizontal axes (∆t)
in Figs. 10 and 11 represent time intervals of input current
pulses (spikes). We integratedIout during the simulation and
plotted normalized values [(a) in Fig. 10]. Then we changed
the value of Vb1 to -2 V. The loweredVb1 reduced the
drain current of m10 and made the delay larger. Again,Iout

was integrated and normalized. The result is plotted [(b) in
Fig. 10]. Larger delay made the integratedIout converge to
zero at a larger∆t. By subtracting (b) from tripled (a), we
obtained half characteristics of STDP learning (c) in Fig. 10.
In Fig. 11, voltage pulses (amplitude: 5 V, pulse width: 10
ms) were applied tou1 andu2 in Fig. 9. ParametersC2 and
Vb2 were set at 5 pF and 3.7 V, respectively. The integrated
Iouts were plotted in Fig. 11(a) forVb1 = 0 and Fig. 11(b)
for Vb1 = −0.04 V. The result was qualitatively equivalent
to the STDP characteristics shown in Fig. 3(d).

IV. CONCLUSION

In this paper, we proposed a simple neural segmentation
model that is suitable for analog CMOS implementation.
First, instead of employing negative weights required for
anti-correlated oscillation among different segments, we in-



troduced positive connections between activators and in-
hibitors among different neuron units. Second, we proposed
a novel segmentation method based on a symmetric spike-
timing dependent plasticity (STDP). The STDP charac-
teristics were produced by combining Reichard’s correla-
tion neural networks that are suitable for analog CMOS
implementation. The proposed segmentation network was
demonstrated through numerical simulations. Basic circuits
for constructing segmentation hardware were proposed and
evaluated. We showed that our circuit could produce sym-
metric STDP characteristics. Our next target is to setup the
entire segmentation network with the proposed circuits.
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