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Abstract
We propose CMOS analog circuits that emulate a model of the Belousov-

Zhabotinsky (BZ) reaction, called the Oregonator. The BZ reaction gives us
a lot of insight into developing new architectures based on a new paradigm in
computing such as active wave computing. The proposed unit circuit exhibits
both excitatory and oscillatory behaviors with very stiff responses, as observed
in typical BZ reactions. We show spatiotemporal behaviors of an array of unit
circuits, including synchronization of cell circuits and production of traveling
waves, by using a simulation program of integrated circuit emphasis (SPICE).

1 Introduction

The formation of spatial and temporal patterns in dissipative and autocatalytic reaction
systems have been spotlighted since almost every natural phenomenon, from traditional
convective phenomena to modern neuro dynamics, can be categorized into these sys-
tems. Although a number of theoretical and numerical studies have been conducted
to reveal the mechanism of those systems, the essential behaviors are still unknown
due to their complexity and requirement of massive computational power in the nu-
merical simulations. In this report, aiming at the development of high-speed emulators
that advance understanding of such systems, we propose an analog CMOS circuit that
implements a reaction-diffusion (RD) system [1].

Implementing RD systems in hardware (VLSI) has several merits. First, hardware
RD system is very useful for simulating RD phenomena, even if the phenomena never
occurs in nature. This implies that the hardware system is one possible candidate for
developing an artificial RD system that is superior to natural system. Second, hardware
RD system can operate much faster than actual RD systems. For instance, the velocity
of chemical waves in Belousov-Zhabotinsky (BZ) reaction is O(10−2) m/s [2], while that
of hardware RD system will be over a million times faster than that of the BZ reaction,
independently of system size [3, 4, 5]. This property is useful for developers of RD
applications because every RD application benefits from the operation speed.

2 The Reaction-Diffusion System

A reaction diffusion (RD) system is described by a set of partial differential equations

∂xi(r, t)

∂t
= Di∇2xi(r, t) + fi

(
xi(r, t)

)
, (1)
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Figure 1: Nullclines and trajectories of the Oregonator in (a) oscillatory mode and (b)
excitatory mode.

where r represents the space, t the time, ∇2 the spatial Laplacian, Di the diffusion
constant, fi the nonlinear reactive functions that depend on several different reactive
species xi. One well-known reactive function is described in a two-variable Oregonator,
which is derived from the BZ reaction [1, 6]. The point dynamics are given by

dx1

dt
=

1

τ

(
x1 (1− x1)− a x2

x1 − b

b + x1

)
, (2)

dx2

dt
= x1 − x2, (3)

where x1 and x2 represent the concentration of HBrO2 and Br− ions, respectively, while
τ , a and b represent the reaction parameters. The value of τ is generally set at τ ¿ 1
since the reaction rate of HBrO2 ion is much faster than that of Br− ions. The nullclines
of the Oregonator where dx1/dt = 0 and dx2/dt = 0 are given by

x2 =
x1 (x1 + b)(1− x1)

a (x1 − b)
, (≡ l1) (4)

x2 = x1. (≡ l2) (5)

A cross point of those two nullclines (l1 and l2) represents a fixed point of the Orego-
nator.

Figure 1 shows the nullclines and trajectories of the Oregonator with typical parameter-
values (τ = 10−2 and b = 0.02). The value of parameter a was set at 1 [Fig. 1(a)] and
3 [Fig. 1(b)]. Depending on the position of the fixed point, the Oregonator exhibits
oscillatory or excitatory behavior. When a = 1, the fixed point is located on nulllcline
l1 at which dx2/dx1 > 0. In this case, the Oregonator exhibits limit-cycle oscillations
[Fig. 1(a)]. The oscillation represents periodic oxidation-reduction phenomena of the
BZ reaction. On the other hand, the fixed point is located on nulllcline l1 at which
dx2/dx1 < 0 when a = 3. Under this condition, the Oregonator exhibits excitatory
behavior [Fig. 1(b)] and is stable at the fixed point as long as external stimulus is not
given.
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Figure 2: Nullclines and trajectories of the proposed analog cell in (a) oscillatory mode
and (b) excitatory mode.

In the Oregonator, three circulative states are introduced according to the phase
of oscillation; i.e., inactive (A), active (B → C), and refractory periods (D → A), as
labelled in Fig. 1(b). The inactive, active, and refractory states represent a depletion
in the Br− ion, an autocatalytic increase in the HBrO2 ion (oxidation of the catalyzer),
and a depletion in the Br− ion (reduction of the catalyzer), respectively. When the
Oregonator is inactive, it easily become active (A → B) by external stimuli. Then, it
turns in refractory state (C → D). During the refractory state, the Oregonator can not
be activated even if the external stimuli was given.

3 Analog CMOS Circuits for the BZ Reaction

We here propose a novel analog cell that is qualitatively equivalent to the Oregonator.
We define the dynamics of a cell as

dx1

dt
=

1

τ

(
−x1 + f(x1 − x2, β1)

)
, (6)

dx2

dt
= −x2 + f(x1 − θ, β2), (7)

where f(·) represents a sigmoid function defined by

f(x, β) =
1 + tanh βx

2
. (8)

The cell dynamics are designed so that the shape of nullclines and flows (ẋ1, ẋ2) are
qualitatively equivalent to that of the Oregonator. The cubic nullcline (l1 in Fig. 1) is
approximated by a nullcline of Eq. (6) as

x2 = x1 − β−1
1 tanh−1(2x1 − 1), (≡ L1) (9)

while the linear nullcline (l2 in Fig. 1) is approximated by a nullcline of Eq. (7) as

x2 = f(x1 − θ, β2). (≡ L2) (10)
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Figure 3: Numerical results of a RD system using the analog cell in (a) excitatory mode
and (b) oscillatory mode.

An analog cell, whose dynamics are described by Eqs. (6) and (7), is very suitable for
analog VLSI implementation because the sigmoid function can easily be implemented
on the VLSIs by using differential-pair circuits.

The proposed cell exhibits qualitatively equivalent behaviors to the Oregonator,
as shown in Fig. 2. The values of parameters are τ−1 = 10, β1 = 5 and β2 = 10.
When θ = 0.5, the fixed point exists on a nulllcline [Eq. (9)] where dx2/dx1 > 0, and
the system exhibits limit-cycle oscillations [Fig. 2(a)]. On the other hand, the system
exhibits excitatory behavior [Fig. 2(b)] when the fixed point exists on a nulllcline (10)
where dx2/dx1 < 0 [Fig. 2(b)].

Now, let us introduce the cell dynamics into the RD model aiming at the construct-
ing 2-D RD system. The dynamics of the RD system are described by substituting
the reactive term in Eq. (1) with the right terms of Eqs. (6) and (7). The discrete
expression of the RD system is given by

dui,j

dt
=

1

τ

(
−ui,j + f(ui,j − vi,j, β1)

)
+ gu

i,j, (11)

dvi,j

dt
= −vi,j + f(ui,j − θ, β2) + gv

i,j, (12)
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Figure 4: An analog cell circuit consisting of single capacitor and two operational-
transconductance amplifiers (OTAs).
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Figure 5: Layout of the analog cell designed with 1.5-µm CMOS process (cell size: 70
× 70 µm2).

where the system variable xi is replaced by ui,j and vi,j, while gu
i,j and gv

i,j represent
external inputs to the cell (interactions between a cell and its neighboring cells) as

gu
i,j = Du

ui−1,j + ui+1,j + ui,j−1 + ui,j+1 − 4ui,j

h2
,

gv
i,j = Dv

vi−1,j + vi+1,j + vi,j−1 + vi,j+1 − 4vi,j

h2
.

Figure 3 shows spatiotemporal activities of the 2-D RD system with 50 × 50 cells
(β1 = 5, β2 = 10, h = 0.01 and Dv = 0) where the values of vi,j are represented
in grayscale (vi,j = 0: black, vi,j = 1: white). The Neumann boundary condition
was applied at the side of the square reaction-space. When τ−1 = 102 and θ = 0.15
at which the cell exhibits excitatory behavior, the 2D system produced target patterns
[Fig. 3(a)], as observed in the basic RD system with the Oregonators. In the simulation,
diffusion coefficient Du was set at 3 ×10−4. The results indicate that the proposed RD
system is qualitatively equivalent to the basic RD system with the Oregonators since the
excitatory property of the analog cells is inherently the same as that of the Oregonator.
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Figure 6: Experimental results of the BZ cell

Figure 3(b) shows dynamic behaviors of the 2-D RD system with Du = 10−4 and
θ = 0.5 at which the cell exhibits oscillatory behavior. Initial values of the cells were
randomly chosen as ui,j = RAND[0, 1] and vi,j = RAND[0, 1]. The system produced
2-D phase-lagged stable synchronous patterns called modelock, due to the weak cou-
pling between the neighboring cells. When Du > 10−3, all cells exhibit synchronous
oscillation, namely, no spatial pattern was produced.

An analog circuit of the proposed cell and its device layout are shown in Figs. 4
and 5, respectively. The circuit consists of single capacitor and two operational-
transconductance amplifiers (OTAs), which implies that the circuit can easily be im-
plemented on silicon VLSIs using conventional CMOS technology. The circuit can be
obtained by qualitative approximation of Eqs. (6) and (7).

When the rate constant of Eq. (6) is much larger than that of Eq. (7), the differential
term of Eq. (6) can be neglected (τ ¿ 1), as introduced in Sec. II. On the other hand,
Eq. (7) with β2 →∞ forces the values of variable x2 to be 0 when x1 ≤ θ, while x2 → 1
when x1 > θ. If the variable x2 is forced to have the value within [0:1], the temporal
difference in Eq. (7) can approximately be represented by binary values. Consequently,
we obtain a new dynamical equation from Eqs. (6) and (7) as

x1 = f(x1 − x2, β1) (13)

dx2

dt
=

{
w (if x1 > θ)
−w (else)

(14)

where w represent positive and small constant. In Fig. 4, an OTA labeled as β1 serves
as the function of Eq. (13), while a capacitor C and the rest OTA receiving voltage
θ produce the dynamics for Eq. (14). The positive constant w is implemented in the
OTA (labeled as w) where w corresponds to the source current of a differential pair.
The output current of the OTA (w) becomes zero when the voltage of output node x2

is equal to the supply voltage (VDD or VSS). The value of x2 is thus restricted within
[VDD:VSS].
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Figure 7: Chip photograph of 2-D BZ circuits.

Figure 6 shows experimental results of the fabricated chip that implements the
reaction circuit shown in Fig. 5 (MOSIS 1.5-µm CMOS, cell size: 70 × 70 µm2). Supply
voltages of an OTA of β1 was set at VDD = 4 V and VSS = 0.5 V, while that of the rest
OTA (w) was set at VDD = 5 V and VSS = GND. The threshold θ was set at 2.5 V
so that the circuit exhibits oscillatory behaviors. In the device layout shown in Fig. 5,
the capacitor C was implemented by a MOS capacitor (lower-right rectangle in Fig. 5).
As expected, the circuit exhibited qualitatively same behaviors as the Oregonator; i.e.,
stiff nonlinear oscillations.

4 Summary

We proposed an analog CMOS circuit that that imitates a model of Belousov-Zhabotinsky
(BZ) reaction. Numerical simulations and experimental results of the fabricated chip
showed that the circuit can successfully produce excitatory responses and thus spiral
waves in the same way as natural reaction-diffusion (RD) systems. These results en-
courage us to develop novel applications based on natural RD phenomena using the
hardware RD devices.

The proposed devices and circuits are useful not only for the hardware RD system
but also for constructing modern neuro-chips. The excitatory and oscillatory behaviors
of the RD circuit are very similar to actual neurons that produce sequences in time
of identically shaped pulses, called spikes. Recently, Fukai showed that an inhibitory
network of spiking neurons achieves robust and efficient neural competition on the
basis of a novel timing mechanism of neural activity [7]. A network with such a timing
mechanism may provide an appropriate platform for the development of analog VLSI
circuits that overcome the problems of analog devices, namely their lack of precision
and reproducibility.
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[2] Á. Tóth, V. Gáspár, and K. Showalter: J. Phys. Chem 98 (1994) 522.

[3] T. Asai, Y. Nishimiya, and Y. Amemiya: IEICE Trans. Fundamentals E85-A (2002)
2093.

[4] T. Asai, Y. Nishimiya, and Y.Amemiya: Proceedings. Int. Semiconductor Device
Research Symp (2001), 141-4.

[5] Y. Nishimiya, T. Asai, and Y.Amemiya: Ext. Abst. 2001 Int. Conf. on Solid State
Devices and Materials (2001), 404-5.

[6] R. J. Field and M. Burger, Oscillations and travelling waves in chemical systems.
John Wiley & Sons, Inc., 1985.

[7] T. Fukai: Biol. Cybern. 75 (1996) 453.

8


