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Abstract—In the remarkable evolution of deep neural net-
work (DNN), development of a highly optimized DNN accel-
erator for edge computing with both less hardware resource
and high computing performance is strongly required. As a
well-known characteristic, DNN processing involves a large
number multiplication and accumulation operations. Thus,
low-precision quantization, such as binary and logarithm,
is an essential technique in edge computing devices with
strict restriction of circuit resource and energy. Bit-width
requirement in quantization depends on application charac-
teristics. Variable bit-width architecture based on the bit-
serial processing has been proposed as a scalable alternative
that allows different requirements of performance and accu-
racy balance by a unified hardware structure. In this paper,
we propose a well-optimized DNN hardware architecture
with supports of binary and variable bit-width logarithmic
quantization. The key idea is the distributed-and-shared
accumulator that processes multiple bit-serial inputs by a
single accumulator with an additional low-overhead circuit
for the binary mode. The evaluation results show that the
idea reduces hardware resources by 29.8% compared to the
prior architecture without losing any functionality, comput-
ing speed, and recognition accuracy. Moreover, it achieves
19.6% energy reduction using a practical DNN model of
VGG 16.

1. Introduction

Deep neural network (DNN) has made great con-
tributions in various artificial intelligence applications,
such as face authentication and self-driving technology,
with its high-level recognition capability [1]. Recognition
accuracy of DNN is enhanced by utilizing wide and
deep structure of neural network elements. Modern neural
network models, such as ResNet [2], have a very deep
and complicated structure with skip connections. While
a larger structure naturally achieves higher accuracy, it
also requires a huge amount of multiply-add computa-
tions. While GPU is a suitable device to accelerate such
applications of numerous multiply-add operations, native
implementations of DNN on embedded edge devices is
quite difficult, due to the available energy capacity. To
realize intelligent IoT systems anywhere, energy-efficient
and high-performance DNN processing mechanisms are
strongly required.

To this end, many DNN accelerators based on Field
Programmable Gate Arrays (FPGAs) and Application-
Specific Integrated Circuits (ASICs) have been proposed.
Prior accelerator architectures mainly focus on optimiza-

tions of processing dataflow [3], optimizations of memory
access traffic between on-chip buffer and external DRAMs
by exploiting the computation behavior of DNN [4].

In addition to the dataflow and memory system opti-
mizations, quantization has been introduced to reduce the
amount of entire data and to simplify the processing hard-
ware by utilizing low bit-width arithmetic units. In various
DNN accelerators, fixed-point data representation is often
used instead of area- and energy-consuming floating-point
representation. The evaluation in [5] indicates 8-bit fixed-
point quantization is enough to achieve the recognition
accuracy equaling or surpassing the original floating-point.
Thus, such the quantization enables light-weight and ef-
ficient DNN processing on restricted resources of circuit
and energy.

BRein [6] is an in-memory neural network accelerator
chip based on BinaryNet, where all the weights and activa-
tions are quantized into either ‘-1’ or ‘1’. The binarization
enables to reduce the circuit area of calculation with
replacing the expensive multiplications with simple bit-
wise XNOR operations.

While the binarization is an ultimate data quantization
for the data amount, the recognition accuracy is certainly
low compared to the floating-point and other quantization
methods. Another size-effective quantization is the loga-
rithmic quantization (log-quantization) [7], that represents
numeric values of weights and activations in logarithmic
domain. Compared to the fixed-point quantization, the
logarithmic quantization can represent a wider range of
values within a smaller bit-width. Thus, it is much effec-
tive to relax the memory and computational requirements
at the high recognition accuracy.

In this paper, we propose an area and energy optimized
DNN accelerator based on the bit-serial log-quantized
DNN accelerator, such as [8]. The baseline architecture
features bit-serial computation for flexible bit precision.
However, a part of the computation units has an idle
time due to the bit-serial computation. We propose the
shared accumulator architecture among multiple bit-serial
processing elements for the reduction of the circuit area
and energy consumption without any functional degrada-
tion. We evaluate the area and energy efficiency of the
proposed architecture, and compare between the baseline
and proposed architecture to show the advantage of the
sharing resources.

This paper is organized as follows: Section 2 ex-
plains the baseline architecture to be compared with our
proposal. Section 3 presents and discusses our proposed
architecture that shares accumulators to reduce the circuit



area. Section 4 shows the evaluation results that compare
the baseline and proposed architecture. Section 5 describes
related works of this work, and Section 6 finally concludes
this paper.

2. Baseline Architecture

In this section, we define a baseline architecture used
for evaluating improvement of area and energy efficiency.
The baseline architecture is based on the prior proposed
bit-serial log-quantized DNN accelerator called QUEST
[8].

2.1. Overall Design

Figure 1 illustrates an overview of the baseline ar-
chitecture: QUEST [8]. QUEST is constructed as a 3D-
stacking module of a DNN processing die and multiple
SRAM dies. All dies are tightly connected via Thru-
Chip Interface (TCI) which is a wireless communication
interface by inductive coupling [9]. Stacking 3D SRAMs
make large capacity (96 MB) and high bandwidth (28.8
GB/s) with small latency (three cycles @ 300 MHz). Since
all data such as weights and activations are quantized
within four bits, QUEST can process large scale DNN
without off-chip memories.

The DNN die on the top of the 3D-stacking module
is composed of 24 cores which have processing element
(PE) arrays to process logarithmic quantized multiply-
and-accumulate (MAC) operations in a bit-serial man-
ner. Therefore, all data are stored vertically and read in
a time-multiplexed manner as shown in Fig. 1(b). The
behavior of each DNN core is completely managed by
its own microcontroller (µ ctrl.). The microcontroller is
a light-weight RISC processor that supports a few types
of instructions to manage the sequencer and the direct
memory access controller (DMAC). The microcontroller
configures the overall computations on the PE array and
memory accesses via the sequencer and DMAC, respec-
tively. The programmable sequencer generates clock-level
control signals of the PE array and scratchpad addresses.
The DMAC handles chunked data transfers between the
PE arrays and the stacked SRAMs via the TCI interface.
Each DMAC accesses both other memory blocks on other
cores via the interconnections and local memory blocks
including SRAM banks on other dies. This allows process-
ing arbitrary DNN models because of its programmability.
The DNN die also has interconnection called a local link
for communications between neighbor cores.

In this paper, we propose a new PE array architecture
based on the baseline architecture of QUEST to improve
area and energy efficiency.

2.2. Logarithmic Quantized Deep Neural Net-
work

Herein, we explain a logarithmic quantization (log-
quantization) method used in the baseline architecture.
The log-quantization is proposed by [7] which approxi-
mate both activations and weights in logarithmic domain.
The approximation formula is represented as

x ≈ Sign(x)× 2Quantize(log2 |x|).

The absolute value of x is approximated by power of
two. In a digital processing, all data are expressed in
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Figure 1. Overall design of log-quantized baseline architecture (QUEST
[8]).

binary number, so that logarithmic expression based two
is suitable.

The most important feature of log-quantization is that
massive-energy-consuming multiplication can be replaced
with addition. The log-quantized multiplication of input
activations and weights can be approximated as

a× w ≈ {Sign(a)× 2ã} × {Sign(w)× 2w̃}
= Sign(a× w)× 2ã+w̃,

where a is input activation, w is weights, ã =
Quantize(log2 |a|) and w̃ = Quantize(log2 |w|). There-
fore, MAC operations can be processed by simple adder-
based calculations.

Another advantage of log-quantization is a low mem-
ory footprint and bandwidth requirements because it is
enough to maintain high image recognition accuracy of
ImageNet dataset within four bits of both activations
and weights [8]. Therefore, QUEST architecture supports
flexible bit precision within four bits by bit-serial compu-
tation.

2.3. PE Array Architecture

Each core has a PE array which processes log-
quantized MAC operations in parallel. A column of the
PE array (PE COL) processes an output activation of
a neuron. Figure 2 shows the relationship between the
operation of the output activation and a PE COL. The
output activation is calculated by MAC of input activations
(a) from n prior layer’s neurons and weights (w), a bias
(b), and an activate function (f ). The PE COL processes
the MAC operation in logarithmic domain with the 32
PEs that process in a bit-serial manner. These 32 paral-
lel MAC operations are calculated in a time-multiplexed
manner until receiving all inputs (n input activations and
n weights). Intermediate partial sums from each PEs are
shifted by a shift register, and an ACT unit at the bottom
of PE COL sums up the partial sums and bias, and applies
the activate function.

Figure 3 shows the overall diagram of PE array. The
16 PE COLs are arranged in a row and input activations
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Figure 2. Neuron mechanism and corresponding bit-serial inputs for
PE COL.

are shared. The PE array has four dedicated on-chip
RAMs of weights (W RAM), input activations (A RAM),
biases (B RAM), and output activations (O RAM). All
RAMs are double buffered to prepare next data in advance
to hide the data transfer overhead. The read activations
and weights are scattered to one bit in bit-serial manner.
Each PE COL has a different W MEM independently to
provide independent weight to each PE. On the other hand,
the input activations of A MEM are shared among the PEs
on the same row. This parallelism allows efficient calcu-
lation for both convolution (CONV) and fully-connected
(FC) layers which are often used in modern DNNs [2],
[10].

2.4. Baseline PE Architecture

In this subsection, we show the baseline PE archi-
tecture that processes MAC operations in a logarithmic
domain for multiplication and a linear domain for accu-
mulation. Figure 4 shows a detailed block diagram of the
baseline PE architecture in QUEST. All weights and input
activations are log-quantized and serialized. Therefore, the
multiplier can be replaced with a simple serial adder. Since
the maximum bit width is 4 (a sign bit and absolute value
in three bits), the serial-add output is set as 5 bits (a sign
bit and 4 sum bits). To obtain the inputs sequentially,
the serial adder processes a sign and MSB of absolute
value of sum at the same time. This feature enables the
variable bit-width arithmetic operation. The 1-bit mode is
a special case that both the input activations and weights
have only sign bits, i.e. binary quantization, where ‘+1’
/ ‘-1’ are represented as ‘0’ / ‘1’ respectively to realize
the multiplication by a simple exclusive OR gate. After
finishing the bit-serial addition, the output is converted
into linear number to process the next accumulation in
high precision. This is because the addition in logarithmic
domain is complicated in digital processing [7]. This
process is conducted by a simple one-hot decoder because
the numbers are quantized into a power of two. Finally, the
output is accumulated until REG in shift register becomes
acceptable.

Note that the baseline architecture has no module to
convert linear numbers into logarithmic numbers at the
input layer. Thus, the input layer is preprocessed and
converted into the logarithmic representation by CPU. The
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Figure 3. PE array architecture.

TABLE 1. BINARY UNIT OUTPUTS

Adder 0 output Adder 1 output Binary Unit output
0 (+1) 0 (+1) +2
0 (+1) 1 (-1) 0
1 (-1) 0 (+1) 0
1 (-1) 1 (-1) -2

logic (linear number) linear number

converted data are then fed into A RAM and W RAM in
the core.

3. Area and Energy Optimization by Shared
Accumulator

In this section, we propose an advanced architecture
based on the baseline architecture by sharing the accumu-
lator in each PE.

In the baseline architecture, each PE has a serial adder
in the logarithmic domain and a parallel accumulator in
the linear domain. Therefore, the numbers of required
clock cycles for an operation between the serial part and
the parallel part are different. Figure 5 shows a timing
chart of the baseline PE architecture when 2-bit serial
inputs. The serial adder takes as many cycles as the bit
width (herein two cycles) in contrast to the accumulator
which takes only a cycle in parallel due to the conversion
from serial logarithmic domain to parallel linear domain.
Therefore, an idle time is occurred at the accumulation
cycles. We aim to reduce the idle time of the accumulator
without losing the function of the baseline architecture.
We found the accumulator can be shared between neigh-
bor PEs. The proposed PE architecture with a shared
accumulator is shown in Fig. 6. Since the proposed PE
shares accumulator with adjacent PE, two PEs in Fig. 4 are
combined into a single PE with the shared accumulator.
Here, the number of combined PEs is limited to two to
support the same flexible bit precision as the one to four
bit baseline architecture. The proposed architecture has a
buffer at the both outputs of the serial adders to hold one
output for waiting the other output’s accumulation.

Figure 7 shows a timing chart of the proposed PE
architecture when 2-bit serial inputs. The two serial adders
process the 2-bit serial addition at the same time, and the
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two buffers hold them. The accumulator receives these
buffer’s data one by one. Therefore, the proposed PE can
process sequentially without a collision of inputs. It is the
same for three and four bits.

On the other hand, in the case for binary inputs, the
two parallel inputs collide in the accumulator. To avoid
this problem, we designed a preprocess unit named Binary
Unit in Fig. 6. The unit is composed tiny circuit of
multiplexers, which receives two sign bits from the serial
adders, and calculates a summation result (Table 1).

Since the proposed PE architecture halved the number
of PEs in PE COL by shared accumulator, the length of
shift register is also halved. As a result, our proposed PE
architecture can reduce the area of PE array without losing
the function of baseline architecture.

While the proposed method introduces two multiplex-
ers between the shift register and the accumulator in the
baseline PE architecture, it usually does not increase the
critical path length. The baseline architecture has some
longer paths outside the PEs for broadcasting the input
activations. Since these additional multiplexers have lit-
tle impact to the critical path, the proposed architecture
can operate at the same clock frequency as the baseline
architecture [8].

4. Evaluation

In this section, we evaluate our proposed architecture
from the viewpoint of area and energy efficiency compar-
ing with the baseline architecture of QUEST. Furthermore,
we show the result of energy efficiency for a recent
practical DNN in our proposed architecture.
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4.1. Methodology

At first, we implemented an RTL design for both
baseline and proposed architecture with Verilog HDL.
The area and energy of these designs are estimated by
Synopsys Design Compiler [11] in a 40-nm CMOS tech-
nology at 300-MHz clock frequency. Characteristics of
SRAM components are evaluated by CACTI6.5 [12] for
the fair comparison. Here, we evaluate only the core
which includes PE array, ACT unit, sequencer and on-chip
RAMs (A RAM, W RAM, B RAM, O RAM) because
our improvements affect only these parts. Therefore, the
area and power of interconnects, microcontrollers and
3D SRAMs are ignored. Finally, we selected a recent
typical DNN models of VGG 16 [10] for ImageNet as
a benchmark.

4.2. Area and Power Efficiency

Table 2 and Table 3 summarize the area and power of
each module for both baseline and proposed architecture
estimated by Synopsys Design Compiler. Since the pro-
posed PE shares the accumulator between two baseline
PEs, we show the result of the one proposed PE and the
two baseline PEs for a fair comparison. Therefore, the size
of the proposed PE array architecture composes 16 × 16
PEs, whereas the baseline is 32 × 16 PEs to normalize
the number of MAC.

Figure 8 compares the area of logic parts of core
which includes the PE array and sequencer. The proposed
architecture achieved 29.8% reduction in core area from



TABLE 2. AREA AND POWER OF BASELINE ARCHITECTURE

Area [(mm)2] Power [mW]

Sequencer 5.92×10−3 1.09
PE Array (PE COL×16) 3.84×10−1 71.5

PE COL (PE×32 + ACT×1) 2.40×10−3 4.47
PEBaseline 7.27×10−4 1.34×10−1

ACT 7.12×10−4 1.83×10−1

Total 3.90×10−1 72.6

TABLE 3. AREA AND POWER OF PROPOSED ARCHITECTURE

Area [(mm)2] Power [mW]

Sequencer 5.92×10−3 1.09
PE Array (PE COL×16) 2.68×10−1 54.7

PE COL (PE×16 + ACT×1) 1.67×10−3 3.42
PEProposal 1.00×10−3 2.02×10−1

ACT 7.12×10−4 1.83×10−1

Total 2.74×10−1 55.8

the baseline architecture. The graph also shows that almost
all the logic parts of core are occupied by PE array, so that
the area reduction of PEs are most effective to optimizing
core area.

In addition to area optimization, Fig. 9 shows the
power estimation per core of the baseline and proposed ar-
chitecture from the results of Synopsys Design Compiler.
From this result, the proposed architecture reduces power
consumption by 23.1% from the baseline. The result
comes from the reduction in the number of accumulators
and the size of shift registers being halved.

From these evaluations, the proposed PE architecture
sharing accumulator can efficiently reduce the area and
power consumption without losing the function of the
baseline architecture.

4.3. Energy Efficiency on a Practical DNN

In this subsection, we evaluate the energy efficiency
of practical DNN application of 1000-class ImageNet
classification [13] using VGG 16 [10]. This DNN model
consists of both CONV and FC layers. We obtained
the pre-trained DNN model from the Caffe Model Zoo
[14], and all parameters are log-quantized. As a result,
the recognition accuracy can maintain 66.32% for Top-1
and 87.02% for Top-5. Note that the evaluation results
do not include computations of the input layer. We use
an in-house cycle-level simulator to estimate the cycle
consumption for each part of the baseline and proposed
cores. The dataflow among the cores are same between the
baseline and proposal because the proposed updates are
inside of the core. Therefore, a throughput of processing
is also same.

Combining the result of Section 4.2 and the cycle-level
simulator, we evaluated the energy consumption of an
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image classification by VGG 16. The result is shown in
Figure 10. These results includes the energy consumption
of on-chip RAMs, sequencer and PE array per core for
VGG 16. As a result, the energy consumption of PE array
that occupies a majority of total core are reduced by 11.5
mJ. This is 19.6% of the total energy consumption of
each core. From these results, we showed our proposed
PE architecture with shared accumulators enables not only
the area optimization but also the energy consumption in
a practical DNN application.



5. Related Work

Several previous studies performed NN accelerations
on ASIC or FPGA [5], [15]. Given their high importance,
there are several methods to reduce the amount of data
necessary to compose DNN at an inference phase to
reduce the cost of hardware acceleration. Deep compres-
sion [16] is a hardware-aware compaction method that
prunes unnecessary weights and compresses the remaining
weights by quantization and Huffman coding. It achieves
almost same the accuracy as that of the original uncom-
pressed model, and EIE [17] implemented this method
on ASIC. SCNN [18] and Scalpel [19] also focus on
exploiting the sparsity of pruned NNs.

Bit-precision is also an important factor in reducing
the amount of data. Binary representation realizes the
lowest cost because it replaces multipliers with a sin-
gle XNOR logic gate [20], [21]. However, it decreases
accuracy in complicated applications. Therefore, several
fixed-point methods focused on obtaining a minimized
bit-precision without accuracy reduction. A dynamical
fixed-point controls the tradeoff between accuracy and
bit-precision [5], [22]. These data representation was ana-
lyzed by [23]. They consider the relationship of hardware
cost and bit precision using CIFAR-10 dataset, a 10-
class classification task [24]. However, there is the most
recent method that reduced bit-precision without multi-
pliers corresponds to logarithmic representation [7], [25],
[26] that can realize logarithmic representation for both
of activation. and weights. We use this representation to
reduce bit-width and analyzed using ImageNet dataset.

Stripes [27] proposed a bit-serial operation architec-
ture based on DaDianNao [28]. It performed flexible bit-
width operation by layer to realize minimum calculation.
Bit-pragmatic accelerator updated it to skip the operation
of zero-bit [29]. Their bit-serial operation is used for only
activations.

In point of bit-serial processing, some works examined
optimizations of bit-serial processing circuits for small
footprint microprocessors [30]–[32]. Unlike these works,
the proposed architecture employs not only bit-serial units
but also bit-parallel units for accumulations. Thus, the
proposal focuses on the redundant circuit of bit-parallel
processing in order to reduce the circuit area.

6. Conclusion

The paper presented an area and energy optimized
architecture based on the shared accumulators among
multiple bit-serial inputs for the bit-serial log-quantized
DNN accelerator. We focused on the idle time of the ac-
cumulators during the bit-serial addition instead of multi-
plications in the linear domain. The accumulators are only
activated after each pack of bits are arrived and added.
As the result, the accumulators are not well utilized. The
proposed the shared accumulator architecture that shares
the accumulators among the neighbor processing units.
The evaluation results indicates the proposed architecture
achieved 29.8% area reduction in the logic part of each
core against the baseline architecture. Furthermore, it also
achieved 19.6% energy reduction of each core for the
practical DNN of VGG 16.
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