
FPGA Implementation of Single-Image Super Resolution based on
Frame-Bufferless Box Filtering

Yuki Sanada, Takanori Ohira, Satoshi Chikuda, Masaki Igarashi, Masayuki Ikebe, Tetsuya Asai, and Masato Motomura

Graduate School of Information Science and Technology, Hokkaido University
Kita 14, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0814, Japan

Phone: +81-11-706-6080, FAX: +81-11-706-7890, E-mail: asai@ist.hokudai.ac.jp

Abstract

Recently, a novel algorithm of filter-based single-image super
resolution (SR) has been proposed [1]. We here propose a
hardware-oriented image-enlargement algorithm for the SR
algorithm based on frame-bufferless box filtering, and exhibit
novel circuits of the proposed enlargement algorithm and the
SR algorithm for FPGA, aiming at the development of single-
image SR module for practical embedded systems.

1. Introduction

Super high-resolution displays, such as retina displays,
4K/8K ultra high definition televisions (UHDTV), and so on,
have been spotlighted in digital home appliance [2]. Su-
per resolution (SR) techniques, which increase resolution
of images, are thus necessary for transcoding existing low-
resolution media on high-resolution displays. A SR system
has to be implemented on hardware if the appliance requires
real time processing, where the system produces outputs si-
multaneously with the inputs with finite latency. SR tech-
niques that employ videos have been proposed in the litera-
ture [3], however, they require multiple frame buffers, and are
thus unsuitable for compact hardware implementation.

Considering these backgrounds above, in this paper, we fo-
cus on single-image SR. Single-image SR can roughly be cat-
egorized into the following three types; i) interpolation-based,
ii) reconstruction-based, and iii) statistical- or learning-based
single-image SR (e.g., see [4]). Interpolation-based algo-
rithms employ digital local filters such as bi-linear filters,
bi-cubic filters, the Lanczos filters, etc., for interpolation of
missing pixels, which causes burring and aliasing in the re-
sulting image. Reconstruction-based algorithms solve an op-
timization problem to reconstruct edges on images, through
many iterations of incremental conversions between high-
resolution and low-resolution images. Statistical- or learning-
based algorithms construct high-resolution image libraries
through iterative learnings. These three approaches may not
fully satisfy both frame-rate and image-qualiry constraints of
present digital home appliance.

enlarge
(x 2)

HPF
(edge extraction)

cubic
(edge ehancement) limiter

weighted
sum

input
image

output imagew/ Lanczos filter

(N x N)

(2N x 2N)

(2N x 2N)

Figure 1: Gohshi’s single-image super resolution model [1].

Recently, Gohshi et al. proposed a novel straightforward
algorithm for single-image SR [1]. The algorithm seems to be
suitable for hardware implementation because it requires no
iterations (and thus no frame buffers), while exhibiting drastic
performance as compared with performances of conventional
interpolation-based algorithms, by reproducing the frequency
spectrum exceeding the Nyquist frequency. The processing
flow is illustrated in Fig. 1. The Lanczos filter will generally
be employed for enlargement of input images, however, upon
the hardware implementation, the filter requires many float-
ing operations on wide filter kernels (Lanczos 2: 4x4, Lanc-
zos 3: 6x6) [5]. Therefore, in this paper, we propose a novel
enlargement algorithm based on box filtering that requires in-
teger operations only between a small number of line buffers,
while keeping almost the same enlargement quality as Lanc-
zos 2. Furthermore, we exhibit novel circuits of the proposed
enlargement algorithm and Gohshi’s SR algorithm for FPGA,
and show the simulation, synthesis, and experimental results.

2. Novel Enlargement Algorithm based on Box Filtering

Figure 2 shows concepts of our enlargement algorithm. As
shown in Fig. 2(a), an input image (N ×N ) is enlarged twice
by upsampling with bilinear interpolation. Then, the enlarged
image (4N×4N ) is given to both a box filter and a normaliza-
tion units. The box filter performs burring to atteneute jaggies
in the enlarged image. Edge refinement of the box-filtered
image is performed based on the normalized data (local max
and min data). Finally, the output image is obtained by down-
sampling, and the resulting image size is 2N × 2N . These
processing flow with a small input-image example (3 × 3) is

2013 International Workshop on Nonlinear Circuits, 
Communications and Signal Processing 
NCSP'13, Isrand of Hawaii, Hawaii, USA. March 4-7, 2013

- 516 -



up sampling
(bilinear, x2)

up sampling
(bilinear, x2)

normalize
(4 neighbors)

Max, Min 
calculation

box filtering
(R x R, R=7)

edge
refinement

down
sampling

input
image

enlarged
 image

(a) Proposed algorithm for enlargement

(N x N)

(2N x 2N)

enlarge (x 2)
input image

(3x3)

bilinear (x2)

max min

box filtering (R=7) refinement

output
image
(6x6)

bilinear (x2)

(b) Processing examples (N = 3, N R = 7)

=

input
image
(N x N)

enlarged
 image

(2N x 2N)

Figure 2: Processing flow of proposed enlargement algorithm.

(a) Column-sum (colsum) calculation

........

Column sums of current row

Line buffer of cloumn sums

Column sums of previous row

+

-2
R

 +
 1

This column sum is updated by 1 -pixel- subtraction and addition

Processing direction

(b) Target box-sum (boxsum) calculation

........
Column sums of current row

Line buffer of cloumn sums
2R + 1

This box sum is updated by 1 -column- subtraction and addition

Overlapping

region
+-

........

Processing direction
Previous box sum 
in temporary buffer

Figure 3: Efficient and fast box filtering.

shown in Fig. 2(b). It should be noticed that inputs always
flow to outputs straightforwardly in this model.

Generally, a burring filter with a wide kernel is required
for obtaining smooth edges, and the number of calculations
for convolution is given by (2R + 1)2 where R represents
the kernel radius in pixel counts. However, the number of
calculations becomes independent of R if the kernel shape is
limited to a box shape only [6]. Therefore we here employ
box filters which basically calculate an average of surround-
ing pixels inside a box region.

As shown in Fig. 3, by introducing one line buffer for keep-
ing summed values in column direction, the number of calcu-
lations in box filtering becomes independent of R. First, a
summed value among 2R+1 pixels along a column centered
by a selected row, which we call colsum, is calculated. Each
colsum is stored in the line buffer at a corresponding column
address. Then, colsum values at the subsequent row are given
by present colsum + (top pixel value of the target column)
− (bottom pixel value of the column), as shown in Fig. 3(a).
Likewise, a (2R + 1) × (2R + 1) box filtering can be per-

+

-

Line buffer of 
cloumn sums

........................

Line buffers of 
input image

In column sum updating, pixels for subtraction and addition are 
directly calculated by bilinear function of input image. 

bilinear function (x4)

Figure 4: Box filtering of proposed enlargement (ex: R = 7).

local window
(3 x 3 diagonal)

local max(= upper limit)

local min(= lower limit)

Smoothed edge is refined by contrast enhancement in the local domain.

Figure 5: Edge refinement process.

formed by summing (2R+1) ‘colsum’s along a row centered
by a selected column. We denote the summed value as box-
sum. For the updates, similarly to updates of colsum values,
the subsequent boxsum values is given by present boxsum +
(rightmost column values of the target box) − (leftmost col-
umn values of the box), as shown in Fig. 3(b). Consequently,
box filtering with one line buffer requires i) accessing two
pixels, ii) four additive/subtractive operations, and iii) nor-
malization operation. Furthermore, since the top and bottom
pixel values for updating colsum values described above can
be obtained from the low-resolution 4x image (outputs of the
second bi-linear process), pixel values of a box-filtered im-
age can directly be obtained by calculating among four line
buffers storing a part of the low-resolution image (Fig. 4).

Edges of box-filtered image are refined by conventional
contrast enhancement based on normalization using maxi-
mum and minimum values in a local domain (Fig. 5). Finally,
the edge-refined image is downsampled, and the resulting im-
age is obtained as 2x enlarged image.

- 517 -



input
image

(serial input)

enlarged
image

(serial output)

up
sampling

up
sampling

up
sampling

up
sampling

line buffer

Max/Min calculationup
sampling

down
sampling

down
samplingbox filter edge

refinement

edge
refinement

edge
refinement

edge
refinement

box filter

box filter

box filter

up
sampling

flow

flow

sum

next_sum
subtraction

data

addition data

+

shift register
(size = 7)

box filter

reg- -+

output

reg

reg>>2

output
input1

input2

+

+

reg

+

reg

>>1

output1

output2

input1

input2

sel

+

+

reg

>>1

>>1

+

upsampler

downsampler
line buffer up

sampling

line buffer

up
sampling

up
sampling

line buffer

line buffer

line buffer

up
sampling

flow
0

Figure 6: Overall view of proposed enlargement circuit with five line buffers.

s

s

n

n

e

e

c

c

w

w

input
stream

line buffers (2N pixels) x 2

8

8

8

88

8

8

8

8

s

n

e

c

w
c

n

w e

s 2D kernel
TXCLK

s-n boundary

e-w boundary

pixel counter

to registers

s-n, e-w boundary

Figure 7: Kernel decoder of super resolution filter.

3. Hardware Implementation of Single-Image Super Res-
olution with Proposed Enlargement Models

Figure 6 illustrates our enlargement circuits implementing
the proposed algorithm. The circuit consists of five blocks: i)
4 (enlargement) + 2 (output control) line buffers, ii) 10 con-
ventional upsamplers, iii) 4 box filters, iv) conventional con-
trast enhancer consisting of a max/min and four edge refine-
ment modules, and iv) 2 conventional downsamplers. The in-
put image is serialized, and then given to the enlargement cir-
cuit. The accepted pixel streams are processed in parallel (4
way), and the parallel outputs are bound by the downsamplers
(to 2), and then re-serialized by additional two line buffers
and a selector. Note that the input and output of the enlarge-
ment circuit are represented by serial pixel-data streams.

c

e

s

n

w

CUB

ADD

output

8

8

8

8

8

10+1 30+1 8+1

89

DIV&LIM

LIM

(4
c-

s-
n

-w
-e

)

(4
c-

s-
n

-w
-e

)3

ADDSUB

8+1
EXT0

(+1: sign bit)

: pipeline registers

Figure 8: Super resolution filter based on Gohshi’s model.

The enlarged and re-serialized stream is given to a SR ker-
nel decoder (Fig. 7). The circuit extracts north (n), south (s),
east (e), west (w), and center (c) pixel values from the in-
put stream being synchronous to a pixel-data transfer clock
(TXCLK). The circuit also implements pixel counters to de-
tect the vertical (s-n) and horizontal (e-w) boundaries (obey-
ing the Neumann boundary). The extracted pixel values (s,
n, w, e, c) are given to a pipelined SR filter circuit (Fig. 8),
where ADDSUB module detects spatial edges, CUB module
enhances the edges, DIV&LIM module compresses the en-
hanced edge and limits the compressed edges, ADD module
sums the limited-and-compressed edges and sign-extended c
values, and LIM module limits the summed value within the
output bit width (8).

- 518 -



Table 1: Implementation and Performance Summary (of modules in Figs. 7 and 8 only)
Input Res. Output Res. Depth ALUT&ALM counts Register counts FPGA CLK VSYNC
400x400 400x400 8-bit gray 16,651 (SR only) 31,732 (SR only) 90 MHz 60 Hz

Figure 9: Experimental sets (enlarged input and SR output).

4. Experimental Results

We implemented the proposed circuits on a commercial
FPGA (MMS Co., Ltd., PowerMedusa, MU300-DVI, Altera
Stratix II). The circuits shown in Figs. 7 and 8 were coded by
VHDL, and were synthesized and place-and-routed by Quar-
tus II. The input image (200x200) was given to an RTL model
of our enlargement block shown in Fig. 6 (coded by Verilog
HDL), and the enlarged image was mirrored to the input DVI
port of the FPGA board. The processed SR images (400x400)
were displayed on a separate monitor through the output DVI
port (Fig. 9). Then, the processed SR images were trans-
mitted to PC via the inrevium TB-5V-LX330-DDR2-E board
(Tokyo Electron Device, LTD.). The input and processed SR
images are shown in Fig. 10 left and right, respectively. The
image was flatten while the edges were clearly kept (Fig. 10
right). Table 1 summarizes specification and performance of
the SR circuits on FPGA. All the line buffers were imple-
mented by FFs of the FPGA. The the number of registers
listed in Tab. 1 includes registers in both primary circuits and
line buffers.

5. Summary

We implemented an algorithm of single-image super reso-
lution (SR) [1] on FPGA where a novel hardware-oriented en-
largement algorithm was employed. Although the proposed
architecture has not been optimized well, one may further re-
duce the number of line buffers, by considering interfaces be-
tween the enlargement and SR blocks. Line buffers in the
kernel decoder may be shared by an output line buffer in the

input image
(200x200)

output image
(400x400)

Figure 10: Demonstration of proposed super resolution filter.

last stage of the enlargement circuit.

Acknowledgment

This study was supported by a Grant-in-Aid for Scientific Re-
search on Innovative Areas [20111004] from the Ministry of
Education, Culture Sports, Science and Technology (MEXT)
of Japan.

References

[1] S. Gohshi, “A new signal processing method for video
—Reproduce the frequency spectrum exceeding the
Nyquist frequency—,” Proc. 3rd Multimedia Systems
Conf., pp. 47-52, 2012.

[2] http://www.itu.int/net/pressoffice/press releases/2012/
31.aspx#.UPNg2OS6eXg, “Ultra High Definition Tele-
vision: Threshold of a new age,” ITU. 2012-05-24.
Retrieved 2012-07-31.

[3] Q. Shan, Z. Li, J. Jia, and C.-K. Tang, “Fast image/video
upsampling,” ACM Trans. Graphics, 27(5), 2008.

[4] Y.W. Tai, S. Liu, M.S. Brown, and S. Lin, “Super resolu-
tion using edge prior and single image detail synthesis,”
in Proc. IEEE Conf. Computer Vision and Pattern Recog-
nition, pp. 2400-2407, 2010.

[5] http://en.wikipedia.org/wiki/Lanczos resampling

[6] M.J. McDonnell, “Box-filtering techniques,” Computer
Graphics and Image Processing, 17(1), pp. 65-70, 1981.

- 519 -


