
Scalable and Highly Parallel Architecture for Restricted Boltzmann Machines

Kodai Ueyoshi, Tetshya Asai, and Masato Motomura

Graduate School of Information Science and Technology, Hokkaido University
Kita 14, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0814, Japan

Phone: +81-11-706-7147, FAX: +81-11-706-7890
E-mail: ueyoshi@lalsie.ist.hokudai.ac.jp

Abstract

Restricted Boltzmann Machines (RBMs) are an effective
model for machine learning; however, they require a sig-
nificant amount of processing time. In this study, we pro-
pose a highly parallel, highly flexible architecture that com-
bines small and completely parallel RBMs. This proposal
addresses problems associated with calculation speed and ex-
ponential increases in circuit scale. Furthermore, we show
that this architecture can optionally respond to the trade-offs
between these two problems.

1. Introduction

Restricted Boltzmann Machines (RBMs) are an important
component of Deep Belief Networks (DBNs). Moreover,
DBNs have achieved high-quality results in many pattern
recognition applications [1]. Therefore, many researchers are
actively studying them, and further development is expected.
However, as RBM scale increases, the amount of calculation
required also increases exponentially. As a result, calcula-
tions on a conventional CPU require a significant amount of
time, which contributes to poor efficiency in these studies.

From this background, it is possible to increase processing
speed by using specific hardware circuits. To achieve this
goal, various RBM architectures have been proposed. Kim
et al. [2] proposed an architecture for large-scale RBMs for
implementation on multiple field-programmable gate arrays
(FPGAs), and Ly and Chow [3] proposed a reconfigurable
architecture for implementation on single or multiple FPGAs.

However, these architectures did not fully utilize the high
parallelism of the neural networks, because they calculated
each layer sequentially. Higher parallelism requires a sub-
stantial circuit scale. This results in a trade-off between cal-
culation speed and circuit scale. However, it is not necessary
to focus on circuit resources in the current nanoscale process.
Therefore, we focus on high parallelism in this study. Fur-
ther, to address this trade-off, a highly selective architecture
is required, and must be optimally designed to respond to the
requirements of the designers.

In this study, we have devised an architecture that divides

RBMs into blocks, to prevent exponential circuit scale in-
creases and sequential calculations according to the number
of blocks. Each RBM block can perform completely paral-
lel calculations. We verified this trade-off according to the
circuit scale of each block.

In Section 2, we describe the RBM algorithm. In Section
3, we explain the architecture proposed in this study. In Sec-
tion 4, we show the register-transfer level (RTL) simulation
results. In Section 5, we provide our conclusions.

v
m

h
n

hidden layer

visible layer

weights

h
1

v
1

Figure 1: RBMs model

2. Restricted Boltzmann Machines

RBMs are a stochastic neural network model consisting of
two layers (a visible layer and hidden layer). As shown in
Fig. 1, it is an undirected graphical model in which the neu-
rons in one layer are all connected to the neurons in a second
layer. RBMs have three parameters: connection weights, vis-
ible biases, and hidden biases. RBMs learn in unsupervised
as they are updated. The update formula can be obtained by
using contrastive divergence (CD) learning [4].

The RBM calculation flow consists of two repeating steps.
First, input data is added to the visible layer, and the hidden
layer is calculated using the visible layer’s values as input.
At this point, all visible layer and hidden layer combinations

- 369 -

2015 RISP International Workshop on Nonlinear Circuits,
Communications and Signal Processing (NCSP'15)
Kuala Lumpur, Malaysia, February 27 - March 2, 2015

are calculated. Second, the visible layer is calculated, using
sampling results from the hidden layer as input. By repeating
these steps, it is possible to approximate the update formula.
We demonstrate this learning algorithm in Algorithm 1. In
this study, we use this algorithm to design the proposed ar-
chitecture.

To construct the DBNs, a hidden layer that has completed
learning is used as a visible layer for the next RBMs. Deep
networks are constructed by stacking these RBMs. After us-
ing back propagation to perform fine-tuning, the DBNs are
completed.

Algorithm 1: RBMs training pseudo-code
input : RBM(v1,, vm, h1,, hn),

Training batch S, Learning rate α
output: parameters wij , bi, cj (i = 1,,m, j = 1,, n)

1 init wij = rand(−1/m ∼ 1/m), bi = cj = 0
2 forall the v ∈ S do
3 v(0) ← v
4 for t = 0 to k do
5 if t 6= 0 then
6 for i = 1 to m do
7 for j = 1 to n do
8 tmp+ = hj

(t) ∗ wij

9 P (vi
(t)) = sigmoid(tmp + bi)

10 vi
(t) = P (vi

(t)) > rand(0 ∼ 1)

11 for j = 1 to n do
12 for i = 1 to m do
13 tmp+ = vi

(t) ∗ wij

14 P (hj
(t)) = sigmoid(tmp + ci)

15 hj
(t) = P (hj

(t)) > rand(0 ∼ 1)

16 for i = 0 to m, j = 0 to n do
17 wij+ = α ∗ (vi(0) ∗P (hj

(0))− vi
(k) ∗P (hj

(k)))

18 for i = 0 to m do
19 bi+ = α ∗ (vi(0) − vi(k))
20 for j = 0 to n do
21 cj+ = α ∗ (P (hj(0))− P (hj(k)))

3. Proposed Architecture

In this section, we will describe the overall flow and speci-
fications of the proposed architecture.

We show an overall diagram of the architecture in Fig. 2.
First, input data of the RBM unit is obtained from the in-
put buffer, and CD learning computation is repeated on the
same unit. Simultaneously, the learning update formula is
calculated for the update unit, and is stored in the unit’s local

LFSR

FSM controller

RBM unit

in
p

u
t
b

u
ff
e

r

m
e

m
o

ry

m
u

lt
ip

lie
r

a
d

d
e

r
tr

e
e

s
ig

m
o

id

 b

in
o

m
ia

l

d
is

tr
ib

u
ti
o

n

update unit

m
u

lt
ip

lie
r

a
d

d
e

r/
s
u

b
tr

a
c
to

r

m
e

m
o

ry

Figure 2: Overall flow

memory. When a learning process is completed, the learning
data is moved from the local memory of the update unit to the
local memory of the RBM unit. These operations are con-
trolled by a common finite-state machine (FSM), controller,
and linear feedback shift register (LFSR).

Input data is assumed to consist of unsigned 8-bit fixed-
point numbers in continuous values of 0 through 1. Con-
nection weights are signed 16-bit fixed-point numbers, and
arithmetic unit results are rounded to signed 16-bit fixed-point
numbers. These specifications are the same as those cited in
[2]. Currently, various models of RBMs have been studied
[4], and this proposed architecture adopts the most basic bi-
nary model. We have adopted this model as a foundation, be-
cause this model, although it is more suitable for binary data,
can be utilized with continuous data and other models after
minor modifications. When using the binary data as input, it
can replace every multiplier with an AND operation.

3.1 Operation of each Phase

In this section, we use an example that consists of four
RBM blocks with four inputs and four outputs. In Fig. 3, we
show a detailed diagram using RBMs divided into 4 blocks.
Three phases are included, and are divided by a shift register.
These registers not only propagate the value of each block,
but also play the role of the pipeline. In the following section,
we describe the operation of each phase.

In Phase1, each RBM block multiplies all the inputs and
connection weights in parallel, and calculates the respective
outputs using an adder tree. This approach is possible because
each RBM block is configured on a small scale. Each RBM
block has its own local memory to save parameters, which are
only used inside each block.

In Phase2, the sigmoid calculation and binomial distribu-
tion calculation are performed. The approximate sigmoid cal-
culation is obtained from a simple circuit, using a piecewise
linear function. A binomial distribution calculation is also

- 370 -

input buffer

shift controller

prameter

 memory

multiplier

& adder tree

piecewise

 linear

 binomial

distribution

 multiplier &

adder/subtractor

update memory

RBM block 0

prameter

 memory

multiplier

& adder tree

piecewise

 linear

 binomial

distribution

RBM block 1

prameter

 memory

multiplier

& adder tree

piecewise

 linear

 binomial

distribution

RBM block 2

prameter

 memory

multiplier

& adder tree

piecewise

 linear

 binomial

distribution

RBM block 3

 multiplier &

adder/subtractor

update memory

 multiplier &

adder/subtractor

update memory

 multiplier &

adder/subtractor

update memory

update unit

shift controller

accumulator + shift controller

Phase 1

Phase 2

Phase 3

Figure 3: Detailed diagram for the proposed architecture

w
0,0

Σ(vw)
0

shift

acc

acc

acc

acc

other blocks

the number of RBM blocks

th
e

 n
u

m
b

e
r

o
f
 i
n

p
u

ts
 ×

 o
u

tp
u

ts

w
1,0

w
2,0

w
3,0

v
0
v
1
v
2
v
3

v
4
v
5
v
6
v
7

v
8
v
9
v
10
v
11

v
12
v
13
v
14
v
15

Σ(vw)
1

Σ(vw)
2

Σ(vw)
3

w
4,0

w
5,0

w
6,0

w
7,0

w
 8,0

w
 9,0

w
10,0

w
11,0

w
12,0

w
13,0

w
14,0

w
15,0

w
0,1

w
1,1

w
2,1

w
3,1

w
4,1

w
5,1

w
6,1

w
7,1

w
 8,1

w
 9,1

w
10,1

w
11,1

w
12,1

w
13,1

w
14,1

w
15,1

w
0,2

w
1,2

w
2,2

w
3,2

w
4,2

w
5,2

w
6,2

w
7,2

w
 8,2

w
 9,2

w
10,2

w
11,2

w
12,2

w
13,2

w
14,2

w
15,2

w
0,3

w
1,3

w
2,3

w
3,3

w
4,3

w
5,3

w
6,3

w
7,3

w
 8,3

w
 9,3

w
10,3

w
11,3

w
12,3

w
13,3

w
14,3

w
15,3

(a) v→h

acc

acc

acc

acc

other blocks

shift

select

weights
h

0
h

1
h

2
h

3

w
0,0

the number of RBM blocks

th
e

 n
u

m
b

e
r

o
f
 i
n

p
u

ts
 ×

 o
u

tp
u

ts

w
1,0

w
2,0

w
3,0

w
4,0

w
5,0

w
6,0

w
7,0

w
 8,0

w
 9,0

w
10,0

w
11,0

w
12,0

w
13,0

w
14,0

w
15,0

w
0,1

w
1,1

w
2,1

w
3,1

w
4,1

w
5,1

w
6,1

w
7,1

w
 8,1

w
 9,1

w
10,1

w
11,1

w
12,1

w
13,1

w
14,1

w
15,1

w
0,2

w
1,2

w
2,2

w
3,2

w
4,2

w
5,2

w
6,2

w
7,2

w
 8,2

w
 9,2

w
10,2

w
11,2

w
12,2

w
13,2

w
14,2

w
15,2

w
0,3

w
1,3

w
2,3

w
3,3

w
4,3

w
5,3

w
6,3

w
7,3

w
 8,3

w
 9,3

w
10,3

w
11,3

w
12,3

w
13,3

w
14,3

w
15,3

Σ(hw)
0

Σ(hw)
1

Σ(hw)
2

Σ(hw)
3

Σ(hw)
12

Σ(hw)
13

Σ(hw)
14

Σ(hw)
15

Σ(hw)
8

Σ(hw)
9

Σ(hw)
10

Σ(hw)
11

Σ(hw)
4

Σ(hw)
5

Σ(hw)
6

Σ(hw)
7

(b) h→ v

Figure 4: Shift I/O data and select connection weights flow

obtained from the simple circuit for determining the output
of 0 or 1, by comparing the input and random numbers from
the LFSR.

In Phase3, the parameter update calculation is performed.
Because the RBM blocks calculate in a completely parallel
manner, the update unit must have a completely parallel archi-
tecture to receive and process the data. In addition, because
the update unit must calculate all parameters, it resembles the
structure of Phase1. It contains local memory to store the up-
date data for the RBM unit, and these values are constantly

updated during the learning process.

3.2 Shift Controller

Each shift controller is responsible for shifting propagated
input and output to calculate all combinations. This move-
ment is different in the v→h operation and the h→v oper-
ation. Fig. 4 is the operation diagram of Phase1, and (a) is
the v→h operation and (b) is the h→v operation. The bit
width and the number of words in each local memory area is

- 371 -

5 × 10
5

10 × 10
5

15 × 10
5

20 × 10
5

0
0 50

block IO = 4

block IO = 8

block IO = 16

block IO = data size

100 250200150

the number of neurons in hidden (or visible) layer

la
te

n
c
y
 (

c
lo

c
k
 c

o
u

n
ts

)

(a) Speed characteristics

block IO = 4

block IO = 8

block IO = 16

block IO = data size

0
0 50 100 250200150

12 × 10
4

10 × 10
4

8 × 10
4

6 × 10
4

4 × 10
4

2 × 10
4

th
e

 n
u

m
b

e
r

o
f
m

u
lt
ip

lie
r

the number of neurons in hidden (or visible) layer

(b) Scale characteristics

Figure 5: Simulation results

determined by the number of RBM blocks and the I/O of each
block. In v→h, the inputs are shifted between RBM blocks
to match the local memory address. In h→v, the accumu-
lated outputs are shifted between RBM blocks. In this case,
because the arrangement sequence of the connection weights
from local memory is incorrect, it is necessary to select the
appropriate connection weights. Therefore, multiplexers are
used to select correct combinations, as shown in Fig. 4(b)
(as a wij = wji in first column). When n inputs and n out-
puts are used, (n2 − n)/2 multiplexers are required. This
approach also became possible because each RBM block was
configured on a small scale.

4. Preliminary Results

We simulated the RTL model (coded in Verilog HDL) of
the proposed architecture using ModelSim. We set simula-
tion conditions as follows. The size ratio of the visible and
hidden layers of the RBMs was 1:1, the number of training
data batches was 100, the number of learning was 100, and
the number of CD learning repetitions was 1. We confirmed
the model’s speed and scale characteristics by changing the
data size(= the number of neurons in each layer). We pre-
pared four types of models, in which the number of inputs
and outputs for each RBM block was 4, 8, 16, and the size
of the data that was not divided into blocks. Fig. 5(a) shows
the number of clock cycles according to the data size (speed
characteristics). In each model, time is linear to the data size.
Fig. 5(b) shows the number of multipliers for the data sizes
(scale characteristics). Because multipliers utilize most of the
circuit area in this architecture, the number of multipliers di-
rectly affects the circuit scale. The divided models exhibit rel-
atively small linear increases, whereas the non-divided model
increases exponentially.

5. Conclusions

From these results, we conclude that the proposed archi-
tecture could reduce circuit scale more effectively than sim-
ple parallelism. Furthermore, it could achieve both speed and
circuit scale in a linear manner. Thereby, the designer could
select the trade-off between speed and circuit scale.

Acknowledgment

The authors would like to thank Dr. Y. Nishi and Dr. Y. Mi-
tani for fruitful discussions regarding the proposed architec-
tures.

References

[1] G. Hinton, S. Osindero, and Y. The, ”A fast learning al-
gorithm for deep belief nets,” Neural Computation, Vol.
18, No. 7, pp. 1527-1554, 2006.

[2] S. Kim, P. McMahon, and K. Olukotun, ”A Large-
scale Architecture for Restricted Boltzmann Machines,”
in Proc. of the 18th IEEE Annual International Sympo-
sium on Field-Programmable Custom Computing Ma-
chines (FCCM), IEEE, pp. 201-208, 2010.

[3] D. Ly, and P. Chow, ”High-performance reconfigurable
hardware architecture for Restricted Boltzmann ma-
chines,” IEEE Trans. Neural Networks, Vol. 21, No. 11,
pp. 1780-1792, 2010.

[4] A. Fischer and C. Igel, ”Training Restricted Boltzmann
Machines: An Introduction,” Pattern Recognition, Vol.
47, No. 1, pp. 25-39, 2014.

- 372 -

	1AM2-2-2

