
A Reaction-Diffusion Algorithm for Texture Generation to Enable Motion Vector Estimation of
Textureless Objects

Miho Ushida1†, Kazuyoshi Ishimura1, Alexandre Schmid2, Tetsuya Asai1, and Masato Motomura1

1Graduate School of Information Science and Technology, Hokkaido University
Kita 14 Nishi 9, Kita-ku, Sapporo 060-0814, Japan

2Microelectronic Systems Laboratory, Swiss Federal Institute of Technology (EPFL)
Lausanne CH-1015 Switzerland

†Email: ushida@lalsie.ist.hokudai.ac.jp

Abstract

We propose a preprocessing technique using a reaction-
diffusion (RD) model to enable motion vector estimation of
textureless object surfaces. Because the motion of pixels be-
tween frames is relatively small in high-speed imaging, mo-
tion vectors of an object are detected by applying a clas-
sic block matching algorithm in small areas. Classic block
matching methods only detect motion vectors for the bound-
aries of objects that have minimal texture information. There-
fore, as a preprocessing step, we add an RD model that cre-
ates a texture on the object. As a result, the motion vector of
an object’s surface can be estimated. However, independent
(of other frames) RD processing causes a flicker (noise) in
the generated texture and background. Consequently, estima-
tion errors occur. To resolve these problems, we propose a
method to remove noise and improve preprocessing using an
RD model.

1. Introduction

Motion vector estimation is an image processing technol-
ogy applied in a wide range of fields; for example, MPEG
motion compensation for moving image compression, dan-
gerous object detection using an onboard camera in a vehicle
[1], and so on.

The block matching method is frequently used in motion
vector estimation algorithms. Using this method, calcula-
tion time increases as the search range between neighboring
frames is extended. However, when high-speed imaging is
used, the movement of an object between frames will de-
crease. Thus, it becomes possible to estimate motion vectors
by searching over a small range. However, when motion vec-
tors of a textureless object are estimated, motion vectors are
estimated only for the boundary of the object; therefore, it is
not possible to precisely estimate the motion vectors of the
object’s surface.

We focused on the dynamics of organic pattern generation,
and designed a preprocessing technique using an RD model
[2], to address the limitations of the block matching method.
This novel algorithm executes the RD process for each frame
sent from the camera module. Using this technique, self-
organizing patterns form in the image areas that have moving
textureless objects. By applying block matching to neighbor-
ing frames processed in this manner, it is possible to estimate
motion vectors of not only the boundaries of an object, but
also surfaces, because of the texture that has been generated.

2. Proposed algorithm

2.1 Reaction-diffusion model

We implemented texture generation as a preprocess, us-
ing an RD cellular automata (CA) model [2]. Dynamics of
an RD model are typically described using partial differen-
tial equations; however, an RD-CA model discretizes space
and simplifies ranges where pixels interact to the nearest four
neighboring pixels. As shown in Fig. 1 (a), we can easily im-
plement the dynamics of this model with the blurring filter
kernel using the nearest four neighboring pixels, a temporary
memory location that stores the blurring processing results,
and a sigmoid function. As shown Fig. 1 (b), the blurring
filter kernel of the nearest four neighboring pixels at ac is de-
scribed as

kernel outaC =
(aN + aE + aW + aS + 4aC)

8
(1)

The filter kernel scans from the upper left of the image toward
the right, one line at a time (Fig. 1 (c)). The blurring intensity
of the entire image increases as a result of the scanning iter-
ations. First, after eight iterations, the results are temporarily
stored to generate self-organizing patterns. This corresponds
to the diffusion of the activators. Subsequently, eight addi-
tional blurring iterations are performed. This corresponds to

- 361 -

2015 RISP International Workshop on Nonlinear Circuits,
Communications and Signal Processing (NCSP'15)
Kuala Lumpur, Malaysia, February 27 - March 2, 2015

input

memory diffusion
8 steps

diffusion
16 steps

sigmoid
function

subtraction

update

output
update= 14

(a)

 aC aE aW

 aS

 aN
 aC aE aW

 aS

 aN

(b) (c)

Figure 1: Reaction-diffusion module: (a) proposed algorithm
for motion vector estimation, (b) a filter kernel, and (c) a ker-
nel scan.

time

old
frame

new
frame

match

motion-vector
direction : west

Figure 2: A motion vector estimation.

the diffusion of the inhibitors. After computing the difference
of these values, amplifying it by a sigmoid function corre-
sponds to the reaction. We define this series of processes as
the update process. Textures are generated by repeating the
update process for the obtained image (Fig. 1 (a)).

2.2 Block matching method

The block matching method estimates the motion vectors
of each block by dividing an image into small, equally sized
regions, and comparing the block with the same block from a
previous frame. By exploiting high-speed imaging, it is pos-
sible to narrow block matching search ranges, because the
motion of a pixel between neighboring frames will be rela-
tively small.

We generate self-organizing patterns for each high-speed
imaging frame using an RD model; subsequently, we estimate

frame=1 frame=40 frame=80

Figure 3: Snapshots of camera module outputs, self-
organized patterns with RD, and motion vectors.

motion vectors by applying block matching (Fig. 2).

2.3 Simulation result

A snapshot that contains estimated motion vectors that
were produced using the proposed algorithm is shown in
Fig. 3. These show, from the top, a source image, the re-
sults of RD, and the results of motion vector estimation. As
planned, texture was generated on the fingers, which were
moving objects; as a result, we can confirm that the generated
texture was largely maintained, although the objects moved.
However, motion vectors were estimated in the entire image,
although only the fingers moved; consequently, many estima-
tion errors occurred. The texture flicker generated by RD,
and the noise caused by light reflections, are assumed to be
the causes of these estimation errors. To reduce these errors,
we devised a method of removing noise before executing RD
processing, and tested it using a simulation. We describe the
solution and results in the following chapter.

3. Solution

3.1 Addition of old frame

We utilized high-speed imaging to inhibit the flicker of the
generated texture, which was one of the causes of the esti-
mation errors. In high-speed imaging, the motion of a pixel
between frames is relatively small. RD processing was exe-
cuted after the addition of an image obtained from RD pro-
cessing for a previous frame, as an afterimage for the fol-
lowing frame (Fig. 4). Using parameter BR, we adjusted the
degree to which we leave afterimages. As a result, it became
possible to generate new self-organizing patterns (depending
on patterns generated in the previous frame), and to inhibit
flicker in the image.

- 362 -

memory

new frame

old frame

BR

diffusion
8 steps

diffusion
16 steps

sigmoid
function

subtraction

update

output

update= 14

Figure 4: Algorithm with addition of previous frame process-
ing

(a)

frame=80

(b)

Figure 5: Snapshots from simulation with addition of previ-
ous frame processing: (a) fingers move toward the left, (b) a
toy box approaches in front.

Motion vector estimation results achieved by adding this
preprocessing technique are shown in Figs. 5 (a) and (b).
These two figures contain the results of RD processing pro-
duced using the same parameter (specifying how much of
the previous frame will be added). By comparing Fig. 3
with Fig. 5 (a), we can confirm that estimation errors in the
background became lighter when the preprocessing technique
was executed. However, as we can observe when comparing
Fig. 5 (a) with (b), it is necessary to adjust the parameter to es-
timate motion vectors, depending on the presence or absence
of textures in the image’s moving objects and backgrounds.

3.2 β differentiation depending on variance

Subsequently, we employed variance to prevent estimation
errors resulting from noise. Variance in textureless regions
results in a value near zero. However, when noise appears
in regions where texture did not exist originally, pixel values
vary and the variance has a value that is not zero (Fig. 6). Us-
ing this information, it adjusts β, the inclination of a sigmoid

with noisewithout noise

update update

space x (a.u.)

br
ig

ht
ne

ss

space x (a.u.)

br
ig

ht
ne

ss

space x (a.u.)

br
ig

ht
ne

ss

space x (a.u.)

br
ig

ht
ne

ss

noise

Figure 6: The relation between noise and variance.

memoryinput

variant calculation
β adjustment

diffusion
8 steps

diffusion
16 steps

sigmoid
function

subtraction

update

output

update= 14

Figure 7: Algorithm with β differentiation processing.

function in RD processing, depending on the variance. We
set the threshold value of the variance to 0.0005, decreased
β in regions where the variance was smaller than the thresh-
old value, and increased β in regions where the variance was
larger. These steps were taken to curb the amplification of
noise (Fig. 7). Results of motion vector estimation achieved
by adding this processing are shown in Fig. 8. By comparing
Fig. 5 (a) with Fig. 8 (a), we can confirm that motion vectors
were only estimated on the fingers, and that we could prevent
the extension of textures generated from background noise.

3.3 two-stage RD processing

In the processing described in the previous section, we
could repress noise. However, because of the relatively small
surface variance of the textureless object for which we orig-
inally attempted to generate a pattern, the texture generation
was curbed, and motion vectors were only estimated for the
boundary of the object. To address this problem, we devised
the solution shown in Fig. 9. First, RD processing is exe-
cuted using β depending on variance, as we proposed in the
previous section, for each pixel a certain number of times.
Noise is curbed here, and textureless regions in the image are
smoothed. Using an obtained image as a source, RD pro-
cessing is executed a certain number of times, with constant

- 363 -

(a)

frame=80

(b)

Figure 8: Snapshots from simulation with β differentiation
processing: (a) fingers move toward the left, (b) a toy box
approaches in front.

memoryinput

variant calculation
β adjustment (by 4th update)

diffusion
8 steps

diffusion
16 steps

sigmoid
function

subtraction
update

output

update= 14

Figure 9: Algorithm with two-stage RD processing

β. As a result, the texture is expanded from the boundary of
the object to the textureless surface, and the motion vector is
estimated. Motion vector estimation results achieved using
this processing technique are shown in Fig. 10. By compar-
ing Fig. 8 (a) with Fig. 10 (a), we can confirm that a texture
was generated on the surface of the finger nail (where texture
was not generated by the process in the previous section), and
that the motion vector was estimated. However, naturally, the
texture also expands to the background outside of the object;
therefore, we cannot conclude that the motion vector is pre-
cisely estimated. Results of a simulation where a textureless
object moves in the background are shown in Fig. 10 (b).

4. Summary

In this study, we proposed a technique to generate textures
on textureless objects using RD processing as a preprocessing
step, and to estimate motion vectors not only for the boundary

(a)

frame=80

(b)

Figure 10: Snapshots from simulation with two-stage RD
processing: (a) fingers move toward the left, (b) hand ap-
proaches in front.

of the moving object, but also its surface when we use block
matching.

At first, when only RD processing is executed as a prepro-
cessing step, estimation errors occurred because of flickers
from the generated texture and noise caused by light reflec-
tions. To resolve these problems, we devised a method of
inhibiting the texture flicker by adding RD results from a pre-
vious frame at a certain rate, and a method of reducing optical
noise by differentiating β in a sigmoid function used in RD,
depending on variance. We then tested the methods in a sim-
ulation. In the results, we could reduce texture flicker and
noise. However, all of these methods required parameter ad-
justments depending on the presence or absence of textures
on the background and moving objects; therefore, the success
or failure of the motion vector estimation depended on these
adjustments. In future work, we will establish more general
parameters, devise enhanced preprocessing techniques, and
perform additional simulations, so that we can more accu-
rately generate self-organizing patterns from the surfaces of
moving textureless objects and estimate motion vectors when
various moving images are input.

References

[1] MORI, Masafumi, et al. “FPGA-Based Design for Mo-
tion Vector Estimation Exploiting High-Speed Imaging
and Its Application to Motion Classification with Neural
Networks,” Journal of Signal Processing, vol. 18, no. 4,
pp. 165-168 (2014).

[2] SUZUKI, Youhei, et al. “Striped and spotted pattern gen-
eration on reaction-diffusion cellular automata Theory
and LSI implementation,” Int. J. Unconv. Comput., vol.
3, pp. 1–13, 2007

- 364 -

	1AM2-1-4

