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Abstract

One of the recent trends in the field of artificial intelligence
is reservoir computing (RC). RC uses a recurrent neural net-
work, and the main feature of the model is its fixed internal
structure. Owing to this fixed structure, the network of an RC
can be replaced with a dynamical system, called a “physical
reservoir.” This report describes a design and benchmarks
using a physical reservoir computing device. We physically
implemented a physical reservoir computing device using an
electrical circuit, ran a time-series prediction benchmark on
the device, and found a significant deviation from the simula-
tion results. Through investigations, it was revealed that 8-bit
quantization caused the deviation.

1. Introduction

The demands of machine learning technology have re-
cently been growing. The development of the Internet has
made our lives more convenient, enabling users to collect
huge numbers of data, which has been labeled “big data.”
By analyzing big data, we can predict and suggest human
behaviors. Therefore, machine learning technology is trend-
ing these days. However, software-based machine learning,
which depends on both a CPU and a GPU, requires a large
number of resources (computational resources, energy re-
sources, and capital)[1]. To solve this problem, hardware-
based machine learning is proposed. In addition, processing
through dynamics, i.e., physical reservoir computing, is one
of the keys to this field[2]. Hence, there are many studies
regarding physical reservoir computing, such as an MRAM
device and robotics arm[3, 4]. In this study, we physically im-
plemented a physical reservoir computing device using elec-
tronic circuits proposed in previous studies[5]. In addition,
we combined the device with a learning device to design a
low-power AI device[6]. Then, we evaluated and compared
its simulation performance with that of an actual device.

Figure 1: Concept diagram of RC

2. Reservoir computing

2.1 Outline

First, we describe how reservoir computing differs from
existing RNN-based models. An RNN is a family of artifi-
cial neural network models, which include models composed
of network structures with recurrent connections. In addi-
tion, error back propagation is widely used as an RNN learn-
ing method. However, applying error back propagation to a
whole network requires many computational resources. To
solve this problem, the echo state network (ESN) and liquid
state machine (LSM) were proposed, without changing the
features of the existing RNN[7, 8, 9]. These models differ
from the existing models in that only the output weights are
updated, as shown in Figure 1[10]. In addition, its fixed net-
work, which works by storing previous states of the network,
is called a reservoir, and models using it are called reservoir
computing models. Because of their fixed structure, networks
can be replaced with physical systems, which are called a
physical reservoir[2], and this feature is paving the way for
“processing by dynamics.”

2.2 Evaluation method

Next, we define the benchmark used for a prediction accu-
racy. In this report, we use the normalized root mean square
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Figure 2: Construction of actual device

difference (NRMSD) of NARMA10-task (NARMA10) and
memory capacity (MC) as benchmarks. MC is a measure of
the memory capacity of past inputs, and NARMA10 is a time-
series dataset based on the recent states of a network[11, 7].
For the definitions of NARMA10 and MC, please see the ref-
erences herein. NRMSD is a measurement of the error be-
tween two series. The smaller the NRMSD of NARMA10 is,
the higher the prediction accuracy.

NRMSD =

√∑T
t=1 (yt − zt)

2

Ave(y)
√
T

. (1)

The definition is provided in (1). For each function and vari-
able, Ave(a) is the average of data a, T is the number of data,
y is the supervisor data, and z is inference data.

3. Construction of Actual device

3.1 Design details of actual device

The actual device comprises an electrical circuit reservoir
that functions as a physical reservoir, an FPGA that functions
as the output weights as well as a learning system, and an
Arduino Uno that serves as a controller, as shown in Figure
2. Arduino Uno controls the timing, generates 8-bit input
data, and calculates 8-bit supervisor data. Input data are 8-bit
unsigned integers, and are converted into the input voltage,
which has a dynamic range of [-1,1]V, using DAC. Supervi-
sor data are 8-bit signed integers, and have a dynamic range
of [-128,127]. These conversions are slightly complex, and
are summarized in Figure 6. The input and supervisor are up-
dated at 250 Hz. The FPGA is used to implement the FORCE
learning accelerator, which updates the output weights and
computes the inference data[6]. FORCE learning is an on-
line learning method, and is ideal for edge computing[12].
Inference data are transferred to Arduino to evaluate the pre-
diction accuracy. For further details on the architecture of

Figure 3: Schematics of node circuit

Figure 4: Readout and transferring mechanism

the accelerator, please see the references. Finally, the Elec-
trical Circuit Reservoir is a physical reservoir composed of
discrete semiconductor devices. It has a 400-node ring net-
work structure, where each node is designed following the
schematics in Figure 3, as proposed in previous studies [5].
Regarding each variable in Figure 3, Rinput(n) is the input
weight resistance of the n-th node, input is the input volt-
age, vin(n) and vout(n) are the stored voltages of the n-th
node, and Rcascade is the network weight resistance. Stored
voltages, which are the network outputs, are converted into
digital 8-bit values, and these values are transferred to FPGA
for learning. This readout mechanism is shown in Figure 4,
and runs at 100 kHz(node/second). To connect these devices
following the diagram in Figure 2, the actual device was com-
pleted, as shown in the Figure 5.

3.2 Difference in SPICE model with actual device

Next, we describe the structure of the Simulation Program
with Integrated Circuit Emphasis (SPICE) model. The SPICE
model is almost the same as the model used in the previous
study, with 400 node circuits connected in series[5]. The in-
put voltage with a dynamic range of [-1,1]V, the node readout
voltage, and the supervisor data are all represented as contin-
uous values, not quantized values. The values are read out
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Figure 5: Photograph of actual device

Figure 6: Difference in actual device with SPICE model

and used for software-based learning. These differences are
summarized in Figure 6.

3.3 Evaluation method and parameters

We next describe the performance measurement method.
For the SPICE model, we ran a circuit-simulation on
NGSPICE, as in the measurement method of the previous
study, and obtained voltage values stored in the nodes[5].
These values and input data are used for BATCH learning
using Python program. For the actual device, supervisor and
inference data are received through the Serial Monitor of Ar-
duino IDE, as shown in Figure 7. We compared the supervisor
data with inference data to evaluate the prediction accuracy.
In both cases, we use 5000 random input data, i.e., from 0 to
1000 for initialization, from 1000 to 4000 for training, and
from 4000 to 5000 for evaluation.

Figure 7: Serial Monitor from Arduino IDE

Table 1: Evaluation of each model
Task SPICE model Actual device

NARMA10 0.086 0.111
MC 72.73 8.02

Table 2: Hypothesis of degrading MC
Case Factor Hypothesis
1 Thermal noise Thermal noise prevents voltage

storage in a node.
2 Quantization

noise
Voltage stored in a node is con-
verted into an 8-bit value by
an ADC. The quantization noise
degraded the accuracy.

4. Evaluation and consideration

4.1 Evaluation

Results of NARMA10-task and MC-task on the SPICE
model and actual device are shown in Table 1. In NARMA10-
task, the prediction accuracy of the SPICE model is better
than that of the actual device, although there was no signifi-
cant difference. By contrast, for the MC-task, we can see that
there was a large difference between the performance of the
actual device and that of the SPICE model. This suggests that
some factors may have reduced the MC of the actual device.

4.2 Consideration of performance difference

Based on these results, we considered the factors that may
degrade the MC. The difference in performance may at-
tributed to the difference between the SPICE model and the
actual device, and thus we summarized the possible factors of
the accuracy degradation in Table 2. We conducted an inves-
tigation into each of these factors.

4.3 Effect of thermal noise

First, we investigated the effect of thermal noise. To de-
termine the effect of thermal noise, we imposed a noise cur-
rent on the SPICE model and evaluated its performance. As
shown in Figure 8, we added a noise current source to the
node circuit of the SPICE model. We adjusted the RMS in-
tensity of the noise from 1 nA to 1µA, and investigated the
effect on the MC. As a supplement, because this electrical cir-
cuit simulation requires significant computational resources
and a several days of running time, we shortened the learning
condition. Under this investigation, we used 500 random in-
put data from 0 to 100 for initialization, from 100 to 400 for
training, and from 400 to 500 for evaluation. The results are
shown in Table 3, which indicates that the MC degrades when
the intensity of thermal noise exceeds 100 nA. However, the
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Figure 8: Schematics of node circuit with noise current
source

Table 3: Effects of thermal noise on MC
RMS intensity(nA) 1 10 100 1000

MC 62.24 61.28 52.48 38.21

intensity of 100 nA is too high, considering that realistic noise
is generally no more than a few nA. Therefore, through this
investigation, it was shown that the actual device has a slight
tolerance to thermal noise.

4.4 Effect of 8-bit quantization

Finally, we investigated the effect of quantization noise. In
the SPICE model, input voltage and node voltage are repre-
sented as continuous values. By contrast, in the actual de-
vice, the input voltage is generated from 8-bit values and the
node voltage is 8-bit-quantized using ADC. Therefore, to de-
termine the effect of quantization noise, we applied pseudo-
quantization, which is expressed through Functions (2) and
(3), to the SPICE model and checked the effect on the MC.

DAC(x) =
⌊x× 128⌋

128
, (2)

ADC(x) =
⌊x× 51.2⌋

51.2
. (3)

The flow of the operation is shown in Figure 9. The predic-
tion accuracy of the SPICE model with pseudo-quantization
applied is shown in Table 4. The NARMA10-task showed a
slight decrease, whereas the MC-task showed a decrease in

Figure 9: Flow of pseudo-quantization

Table 4: Effect of pseudo-quantization on SPICE model
Task SPICE model 8-bit SPICE model

NARMA10 0.086 0.119
MC 72.73 35.54

accuracy of 50%. This result suggests that the quantization
noise may have a significant impact on prediction accuracy
of the device.

5. Conclusions

In this study, we designed a physical reservoir comput-
ing device composed of electronic circuits and an FPGA, re-
ported the results of an evaluation of the spice model, and dis-
cussed their performances. The actual device showed a sim-
ilar performance in NARMA10-task, but a significant degra-
dation in the prediction accuracy in MC-task. The results
of an additional investigation suggested that the cause of the
degradation was quantization noise. In the future, we would
like to continue to verify the performance degradation caused
by quantization noise as well as other factors. We would also
like to redesign the device based on these investigations.
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