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Abstract— This paper presents an analog inte-
grated circuit (IC) that implements the Lotka-Volterra
(LV) chaotic oscillator. The LV system describes
periodic or chaotic behaviors in prey-predator sys-
tems with a simple mathematical form. The proposed
circuit consists of a small number of metal-oxide-
semiconductor field-effect transistors (MOS FETs)
operating in their subthreshold region, which is very
suitable for large-scale IC implementation. A general
method for implementing the LV system on analog ICs
is also presented.

I. I NTRODUCTION

The design of chaotic oscillators has been a sub-
ject of increasing interest during the past few years
[1]. Indeed, analog integrated circuits that implement
chaotic oscillatory systems provide us important cues
for exploring and discovering novel forms of infor-
mation processing. Many designs of chaotic oscilla-
tors were introduced starting from the use of a coil in
Chua’s circuit to the use of large blocks such as oper-
ational amplifiers. In both cases, the fabrication area
was very large. These designs were also dependent
on the use of floating capacitors, the use of high sup-
ply voltage and high power dissipation, which is not
preferred in fabrication due to the demanding need for
portable devices in our world today. In this paper, we
propose micropower analog MOS circuits that exhibit
chaotic behaviors with very simple circuit construc-
tion.

II. A NALOG MOS CIRCUITS FOR THE

LOTKA-VOLTERRA MODEL

The Lotka-Volterra (LV) model is one of the earli-
est predator-prey models to be based on sound mathe-
matical principles. It forms the basis of many models
used today in the analysis of population dynamics. We
here employ a LV model that describes interactions
between three species in an ecosystem, i.e.; one preda-
tor and two preys [2]. In addition to the predation of
the preys, the two preys compete with each other for

their feeding ground. The dynamics are given by

τ ẋ1 = (1− x1 − x2 − k y)x1, (1)

τ ẋ2 = (a− b x1 − c x2 − y)x2, (2)

τ ẏ = (−r + α kx1 + β x2)y, (3)

wherex1 andx2 represent the prey population,y the
predator population,τ the time constant, the rests (k,
a, b, c, r, α andβ) are control parameters.

By introducing three new variables:

X1 = lnx1, X2 = ln x2, Y = ln y, (4)

Eqs. (1), (2) and (3) can be transformed into:

τẊ1 = 1− exp(X1)− exp(X2)− k exp(Y ),(5)

τẊ2 = a− b exp(X1)− c exp(X2)− exp(Y ),(6)

τ Ẏ = −r + αk exp(X1) + β exp(X2). (7)

This transformation has two merit for analog MOS
implementation: i) the resultant equations [(5), (6)
and (7)] do not have multiplying terms of system vari-
ables and are described by linear combination of ex-
ponential functions, which enables us to design the
circuit without any analog multiplier; ii) the exponen-
tial nonlinearity is essential characteristics of semi-
conductor devices, which enables us to design a cir-
cuit based on the intrinsic characteristics of semicon-
ductors. We here use the exponential current-voltage
characteristics of subthreshold MOS FETs [3].

In the subthreshold region of operation without
body effect, the drain-source current of a saturated n-
type MOS FET is given by

Ids = I0 exp(
κ

VT
Vgs) (8)

whereIds represents the drain-source current,Vgs the
gate-source voltage (≥ 4VT for saturation),κ the ef-
fectiveness of the gate potential, andVT ≡ kT/q ≈
26 mV at room temperature (k is Boltzmann’s con-
stant,T the temperature, andq the electron charge),
andI0 the fabrication parameter. Typical parameter
values for minimum-size devices fabricated in a stan-
dard 1.5-µm n-well process areI0 = 0.5 × 10−15 A
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Fig. 1. Construction of LV circuit.

andκ = 0.6. Note that Eq. (8) is valid only when the
MOS FET is saturated; i.e.,Vgs ≥ 4VT .

Figure 1 shows construction of the LV circuit. Ap-
plying KCL at node (a) and (b) in Fig. 1, we obtain

CV̇1 = I1 − I
(M1)
0 exp(

κ

VT
V1)− I

(M1)
0 exp(

κ

VT
V2)

− I
(Mk)
0 exp(

κ

VT
V3) (9)

CV̇2 = I2 − I
(Mb)
0 exp(

κ

VT
V1)− I

(Mc)
0 exp(

κ

VT
V2)

− I
(M1)
0 exp(

κ

VT
V3) (10)

whereI
(M∗)
0 the fabrication parameter. The node volt-

agesV1 andV2 are also given to the gates of MOS
FETs Mαk and Mβ, respectively. Because the cur-
rents of Mαk and Mβ are copied to node (c) by two
pMOS current mirrors (PCMs in Fig. 1), the node
equation is represented by

CV̇3 = −I3 + I
(Mαk)
0 exp(

κ

VT
V1) +

I
(Mβ)
0 exp(

κ

VT
V2). (11)

Equations (9) to (11) become equivalent to Eqs. (5)
to (7), respectively, when

Vi =
VT

κ
Xi, (i = 1, 2, 3), τ =

CVT

i0κ
,(12)

I1

i0
= 1,

I2

i0
= a,

I3

i0
= r, (13)

I
(M1)
0

i0
= 1,

I
(Mk)
0

i0
= k,

I
(Mb)
0

i0
= b, (14)

I
(Mc)
0

i0
= c,

I
(Mαk)
0

i0
= αk,

I
(Mβ)
0

i0
= β, (15)

wherei0 represents the normalized current.
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Fig. 2. Chip micrograph of a fabricated LV circuit (MO-
SIS, vendor: AMIS,n-well single-poly double-metal
CMOS process, feature size: 1.5µm, total area: 75µm
× 40µm).

MOS FET W (µm) L (µm)
M1 4 1.6
Mb 12 3.2
Mc 4 1.6
Mk 40 1.6

Mαk 20 1.6
Mβ 4 3.2

TABLE I
SIZE OF NMOS FETS ON LV CHIP.

III. E XPERIMENTAL RESULTS

We fabricated a prototype circuit using a 1.6-µm
scalable complementary-MOS (CMOS) rule (MO-
SIS, vendor: AMIS,n-well single-poly double-metal
CMOS process,λ = 0.8 µm, feature size: 1.5µm).
Figure 2 shows a micrograph of the LV circuit. We
employed the same parameter set of the LV system
(k = 10, b = 1.5, c = 1, αk = 5, β = 0.5) as in
[2] where a stable focus bifurcates into chaotic oscil-
lation via stable period-n cycles. The resultant size
of nMOS FETs are listed in Tab. 1. The pMOS cur-
rent mirrors (PCM) were designed with a dimension
of W/L = 4 µm / 1.6µm. The circuit took up a total
area of 75µm× 40µm.

In the following experiments, we added external ca-
pacitors (C = 0.1µF) out of the chip due to the time
resolution of our measurement systems. We used Ag-
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Fig. 3. Experimental results of fabricated LV circuit. (a) and (c) show time course of system variables (V1, V2 andV3).
(b) and (d) show trajectories on aV1-V3 plane. (a) and (b) represent results forI3 = 320 nA, while (c) and (d) results
for I3 = 360 nA.

ilent 4156B as external current sources for the input.
Time courses ofV1, V2 andV3 were sampled simulta-
neously by Agilent 4156B. The supply voltage (VDD)
was set at 2.5 V. The input currents(I1, I2) were fixed
at (250, 287) nA. We examined dynamic behaviors of
the fabricated LV circuit by changing the rest input
currentI3 that corresponds to the control parameterr
in (3).

Figure 3 shows the measurement results. Figures
3(a) and 3(b) show the time course of the system vari-
able (V1, V2 andV3) and trajectories on aV1-V3 plane,
respectively. In this experiment,I3 was set at 320
nA. The LV circuit exhibited stable oscillation with
period-1 cycles. In Figs. 3(c) and 3(d), which repre-
sent the time course of the system variable and trajec-
tories on aV1-V3 plane, respectively,I3 was set at 360
nA. The LV circuit exhibited stable oscillation with
period-2 cycles. Figures 4(a) and 4(b) show the time

course of the system variable and trajectories on aV1-
V3 plane, respectively. In this experiment,I3 was set
at 420 nA. The maximum value of the Lyapunov ex-
ponents was 10.1, which indicated that the LV circuit
exhibited chaotic oscillation.

We confirmed whether the qualitative behavior of
the circuit is consistent with the theoretical analysis.
According to [2], as the value of the control param-
eter r increases fromr1 to r2, the Hopf bifurcation
occurs atr ≡ rα andr ≡ rβ where the stable focus
bifurcates (r1 < r < rα) to the unstable focus with
enclosing limit cycle (rα < r < rβ). Then the unsta-
ble focus bifurcates to the stable focus (rβ < r < r2).
We confirmed this transition (stable focus→ unstable
focus with enclosing limit cycle→ stable focus) in the
LV circuit during the increase ofI3 (∼ r). Figure 5
shows the bifurcation diagram obtained from the LV
circuit. The diagram was created as follows: 1) when
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Fig. 4. Experimental results of fabricated LV circuit.
(a) and (b) show time course of system variables (V1,
V2 andV3) trajectories on aV1-V3 plane, respectively,
whenI3 = 420 nA.

the circuit had stable focus with a givenI3, the stable
value ofV3 was plotted, 2) when the circuit oscillated
with a givenI3, the value ofV3 at whichV̇3 = 0 was
plotted. WhenI3 < 182 nA, the LV circuit did not
oscillate (stable focus). The stable focus bifurcated
at I3 ≈ 182 nA to stable period-1 cycles. Increasing
the value ofI3, further bifurcations to period-2 cy-
cles, period-4 cycles, chaotic cycles occurred around
370 nA < I3 < 450 nA. Finally, the unstable focus
bifurcated to a stable focus again atI3 ≈ 580 nA.

The results in Fig. 5 indicates two important prop-
erties of the proposed LV circuit: 1) although we
used practical subthreshold MOS FETs, the bifurca-
tion property is qualitatively consistent with the result
of theoretical analysis; 2) the LV circuit exhibits sta-
ble oscillation with period-n and chaotic cycles over
a wide range ofI3; i.e., 182 nA< I3 < 580 nA,

I3 (µ )

V
3

Fig. 5. Bifurcation diagram of LV circuit.

which allows the LV circuit to keep stable oscillation
under noisy environment, even though the subthresh-
old MOS FETs were used in the circuit.

IV. SUMMARY

We proposed an analog integrated circuit (IC) that
implements the Lotka-Volterra (LV) chaotic oscillator.
We designed very simple (just 12 transistors) circuit
for the LV oscillator where all transistors operated in
their subthreshold region. The LV oscillator was fab-
ricated using a 1.6-µm scalable rule (MOSIS, vendor:
AMIS, n-well single-poly double-metal process,λ =
0.8 µm, feature size: 1.5µm). The circuit took up a
total area of 75µm× 40 µm. Although the quantita-
tive results of the fabricated circuit were inconsistent
with the theoretical analysis, the qualitative behavior
(bifurcation property) agreed well with the result of
theoretical analysis. Furthermore, the LV circuit ex-
hibited stable oscillation with period-n and chaotic
cycles over a wide range of control current, which en-
ables us to design a stable oscillator that can operate
under noisy environment, even though the subthresh-
old MOS FETs were used in the circuit.
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