
A Hardware Cellular-Automaton Architecture for Spatial Pattern Generation
towards Motion-Vector Estimation of Textureless Objects

Aoi Tanibata†, Miho Ushida†, Alexandre Schmid‡, Masayuki Ikebe†, Tetsuya Asai†, Masato Motomura†

†Graduate School of Information Science and Technology, Hokkaido University
Kita 14, Nishi 9, Kita-ku, Sapporo 060-0814, Japan
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Abstract

In [1, 2], we proposed a hardware-oriented cellular-
automaton algorithm that generates the spatial patterns
of textureless objects and backgrounds to estimate the
motion-vectors of textureless moving objects. In this re-
port, we propose the fundamental architecture for the al-
gorithm. The system consists of one-dimensional shift-
register arrays and arithmetic operators for diffusion, a
lookup table acting as a nonlinear “reaction” function,
and several state controllers (counters, multiplexers, etc.),
which together act as a one-dimensional reaction-diffusion
streaming processor (RDSP). Two-dimensional image pro-
cessing is performed for texture generation by arranging
the one-dimensional RDSP on a two-dimensional mesh in
a time-division manner, which reduces the complexity of
the circuit system as a whole.

1. Introduction

Motion estimation is used in various applications such
as hand gesture user interfaces[3] and automatic anomaly
detection in monitoring camera pictures[4]. This technique
has been actively researched in recent years. The block-
matching method is one of the most common methods for
motion estimation. However, when this method is applied
to textureless moving objects, it can detect the motion vec-
tor of the outline only (Fig.1 (a)). In this case, we cannot
perceive it as a textureless object or a frame. To estimate
the motion more precisely, we have to detect the motion
vectors in the outline of textureless moving objects. There-
fore, we propose a hardware-oriented cellular-automaton
algorithm that generates the spatial patterns of textureless
objects and backgrounds in order to estimate the motion
vector of textureless moving objects[1, 2]. The textureless
moving objects are regarded as objects with the same pat-
terns as the generated spatial patterns. Accordingly, we can
detect the motion vectors in the outline of the textureless
moving objects (Fig.1 (b)). In this study, we propose a fun-
damental module and architecture for this algorithm.

(b)(a)

Figure 1: Motion estimation for a textureless object: (a)
image of usual motion estimation, (b) image of motion es-
timation with spatial patterns generated

2. Algorithm

We proposed an algorithm that generates the spatial pat-
terns using the reaction-diffusion (RD) model[1, 2]. The
RD model is a well-known method for spatial pattern
generation[5]. One-dimensional RD is obtained by itera-
tive updating. This updating consists of three processes:
diffusion, subtraction, and amplification. The diffusion
process involves iterative blurring. Blur is described as

ai(t + 1) =
ai−1(t) + 2ai(t) + ai−1(t)

4
(1)

where i is the ith pixel in a row of an image, and t is ttimes
blurring. The subtraction process involves finding the dif-
ference between the before diffusion and after it. The am-
plification process amplifies the value using the sigmoid
function. In addition, we have to reduce the adverse influ-
ence of noise. Therefore, we add a filter that updates af-
ter every iteration of updating. We perform only diffusion
in filter updating because smoother spatial patterns can be
generated through this process.

In two-dimensional RD, the two-dimensional input im-
age is first divided into a one-dimensional arrangement, x
and y. These arrangements are then repeatedly processed
by the one-dimensional RD model. Finally, they are multi-
plied together [1, 2].
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Figure 2: Module for One-dimensional Reaction-Diffusion
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Figure 3: State Transition Diagram

3. Circuits

3.1. Module for One-dimensional Reaction-Diffusion

The proposed module for one-dimensional RD is shown
in Fig.2. In addition, the state transition diagram of the
module is shown in Fig.3. The one-dimensional RD algo-
rithm is considered as switching and repetition of two oper-
ations: blurring, and subtraction and amplification. There-
fore, we prepare the module as a state machine in this study
as shown in Fig.3.

In Fig.2, i is the number of blurrings and u is the number
of updates. In this case, diffusion is obtained by blurring
t times. A one-dimensional RD is obtained by updating k
times. Normal refers to the normal updating consisting of
three processes including diffusion, subtraction, and ampli-
fication. Filter refers to filter updating.

We also devised a state controller consisting of counters.
These counters count the number of blurrings, updates, and
pixels in one row of an image. The multiplexers and control
signals for the first-in first-out memories (FIFO) consisting
of shift registers are controlled by the signals from the con-
troller, and the module can be switched between states.

The module goes into the blurring state during diffusion
and filtering. It transmits a pixel value as the output from
the imager to the shift-register. It obtains the necessary
pixel values from the shift-register. The module loads from
the last burring result instead of the imager from the sec-
ond iteration onward. It saves the pixel values loaded as
the values obtained before diffusion in the FIFO if blurring
occurs immediately after updating.

The module becomes goes into the subtraction and am-
plification state during subtraction and amplification. It
subtracts the values after diffusion from the values before
diffusion and amplifies the result using the sigmoid func-
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Figure 4: Architecture of Two-dimensional RD and its tim-
ing chart

tion. The sigmoid function is made up of the LUT (Look-
up table).

3.2. Architecture for Two-dimensional reaction-
diffusion

The proposed architecture for two-dimensional RD is
shown in Fig.4. Dif1d is the module used for one-
dimensional RD.

We also prepared a state controller consisting of some
counters similar to the one used in one-dimensional RD.
The controller controls the signals for static random ac-
cess memories (SRAM) and the direction of readout pixel
values, in addition to the signal for the one-dimensional
RD module. We have to maintain the initial value in two-
dimensional RD. The initial values are divided into a one-
dimensional arrangement, x and y in rotation. Therefore,
the architecture begins by saving the pixel values loaded
from the imager in the SRAM for input. At the same time,
it processes x though the module for one-dimensional RD
and saves the result in SRAM for output. After this, the
architecture obtains the initial values in y from the SRAM
for input and processes in y. Finally, it multiplies the re-
sults of one-dimensional RD of x and y and provides it as
the results of two-dimensional RD.

Two-dimensional image processing for texture gener-
ation is performed by arranging the module for one-
dimensional RD on a two-dimensional mesh in a time-
division manner, which reduces the complexity of the cir-
cuit system as a whole.

4. Results

4.1. One-dimensional reaction-diffusion

The bit width of the pixel values affects the precision of
the result of one-dimensional RD in terms of module one-
dimensional RD. We process data with widths of 12 bit and
8 bit through one-dimensional RD and determine the Fast
fourier transform (FFT) of the result.

In this case, diffusion is achieved by blurring 25 times. A
one-dimensional RD is obtained by updating 10 times. We
add a filter updating after every 4 iterations of updating.
The gain of the sigmoid function is 5.
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Figure 5: Comparison results of 12-bit and 8-bit in one-
dimensional reaction-diffusion 1: (a)(d) initial values,
(b)(e) result of one-dimensional reaction-diffusion, (c)(f)
result of FFT

The simulation results are shown in Fig.5. The wave-
form of the 12-bit data is smoother than that of the 8-bit
data. The waveform of 8-bit data is sufficiently smooth at a
glance. However, we have to consider the result of the FFT.
In the result of the 12-bit data, the necessary frequency
component has more digits than the noise component. On
the other hand, the necessary frequency component in the
result of the 8-bit data has approximately the same number
of digits as that in the noise component. In this case, we
can reduce the noise easily in 12-bit data, but we cannot
do so in the 8-bit data. In Fig. 6, we repeat the simulation
by changing the initial values and obtain the same result.
Therefore, we need a width of at least 12-bit for the pixel
values.

4.2. Two-dimensional reaction-diffusion

The generated spatial pattern of the two-dimensional in-
put image is shown in Fig.7. In this case, we used a picture
of 120*120 pixels. We assume that we detect the motion
vectors of textureless moving objects and prepare a picture
of textureless objects against a real background.

The spatial patterns are generated for textureless objects
and backgrounds. The same spatial patterns are generated
between two frames for textureless objects, regardless of
the changing position of textureless objects. Therefore, it
appears that the detected motion vectors are in the outline
of the textureless moving objects. In Fig. 8, we repeat
the simulation by changing the backgrounds and obtain the
same result.
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Figure 6: Comparison results of 12-bit and 8-bit in one-
dimensional reaction-diffusion 2: (a)(d) initial values,
(b)(e) result of one-dimensional reaction-diffusion, (c)(f)
result of FFT

frame=0 frame=10

Figure 7: Result of two-dimensional reaction-diffusion
with a real background 1
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Figure 8: Result of two-dimensional reaction-diffusion
with a real background 2

5. Summary

In this study, a module is used as the state machine in
one-dimensional RD and arranged on a two-dimensional
mesh in a time-division manner in two-dimensional RD.
Therefore, we can reduce the complexity of the circuit sys-
tem as a whole. In addition, we determine the appropriate
bit width of pixel values for one-dimensional RD. In future,
we seek to develop a hardware implementation that enables
real-time processing.
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