
High Level Synthesis with Stream Query to C Parser:

Eliminating Hardware Development Difficulties for Software Developers

†Eric Shun Fukuda ‡Takashi Takenaka ‡Hiroaki Inoue
∗Hideyuki Kawashima †Tetsuya Asai †Masato Motomura

†Graduate School of Information Science and Technology
Hokkaido University

Sapporo, Hokkaido, 060–0814 Japan
{fukuda@lalsie., motomura@, asai@}ist.hokudai.ac.jp

‡NEC Corporation
Kawasaki, Kanagawa, 211–8666 Japan
{takenaka@aj, h-inoue@ce}.jp.nec.com

∗Graduate School of Systems and Information Engineering
University of Tsukuba

Tsukuba, Ibaraki, 305–8573 Japan
kawasima@cs.tsukuba.ac.jp

Abstract— Recently, reconfigurable hardware is at-

tracting wide attention as a stream processing plat-

form for its high performance and power efficiency.

To allow many software engineers to benefit from re-

configurable hardware, high level synthesis tools have

been actively developed. Although these tools have

enormously reduced the amount of work and difficul-

ties, the users still need hardware development knowl-

edge. In this paper, we introduce a method that

parses SQL queries into high-level-synthesis-intended

C codes. Our experiments using a dynamically recon-

figurable hardware that features a high level synthesis

tool showed that the hardware’s potential was fully

extracted and the developer writing the SQL queries

does not need hardware development knowledge.

I. Introduction

The amount of information over the Internet has been
explosively increasing in recent years. To deal with this
so-called “Infoplosion [3],” parallel distributed computing
has been effectively adopted. However, the ever-rising
power consumption of parallel distributed computing has
become a serious and immediate issue.

In view of this situation, reconfigurable hardware is at-
tracting attention as a solution for reducing the power
consumption[6, 4]. Although using a dedicated hardware
for a specific task has always been effective for reducing
the power consumption, the application was limited due
to its high manufacturing cost. Now that reconfigurable
hardware lowered the cost for developing dedicated hard-
ware dramatically, it is applied to many kinds of tasks.

Stream processing is one of the fields that dedicated
hardware can be highly effective. Since stream processing
requires continuous observation over information streams,
and streams often have a very high bit rate, advantages
of dedicated hardware such as high throughput and low
power consumption is highly beneficial for stream pro-
cessing. Therefore, stream processing by reconfigurable
hardware is one of the active research fields recently.

A major problem of reconfigurable hardware acceler-
ated stream processing is that it is difficult for software
engineers to use. Using a reconfigurable hardware re-
quires hardware development knowledge which is entirely
different from software development knowledge. Gener-
ally, however, complicated algorithms for stream process-
ing are developed by software engineers. Therefore, in
order for reconfigurable hardware acceleration for stream
processing to be widely used, it is essential to enable soft-
ware engineers to design hardware.

High level synthesis (HLS) is one of such technologies.
It reduces the development cost of hardware by synthesiz-
ing hardware configurations from software code such as C.
However, as HLS design experts are fairly well aware of,
and as revealed in detail in a recent study [1], hardware
development knowledge is still needed even when using
HLS tools.

Another approach to enable software engineers to de-
sign hardware is to use a language that is more specific
to an application such as SQL-based stream language [6].
Although this approach restricts the application of the
product hardware, the developer needs less knowledge
about hardware development compared to HLS. Since this
approach is intended to compile SQL queries directly to

SASIMI 2013 ProceedingsR5-4

- 310 -

SQL-based stream query

Depends on

platform hardware.
Compiler

Mueller’s approach [5]

Hardware configuration

Parser Less dependent on

platform hardware.

Our approach

HLS code

SQL-based stream query

Hardware configuration

Provided by the platform

hardware developer.
HLS tool

Fig. 1. Comparison of conventional and our approaches.

hardware configurations, however, developing such com-
piler would take much effort to support various reconfig-
urable hardware.

In order to overcome these difficulties of HLS and SQL-
to-hardware compiler, a method that uses both of these
in combination has been proposed [7]. This approach first
uses a parser that converts an SQL query to an HLS code
written in C, and then uses an HLS tool that compiles the
code to a hardware configuration. Although this method
was proposed as a part of a larger system that uses an
FPGA, it successfully reduced the workload of develop-
ment of SQL-to-hardware compiler by giving over the
hardware configuration process to the HLS tool, rather
than doing it by hand.

Since the HLS tool undertakes the hardware specific
configuration, this method should be able to be applied
to other hardware. Therefore, in this paper, we try to
apply this method to another reconfigurable hardware,
Dynamically Reconfigurable Processor (DRP), and focus
on compiling basic SQL queries that were used in [6] as
our primary evaluation.

Our contributions in this paper are as follows:

• We evaluate how well the SQL-to-C parser extracts
DRP’s potential.

• We verify whether the SQL-to-C parser provides
SQL-to-hardware compiler with portability to DRP
by using it in combination with an HLS tool.

• We point out what should developers of SQL-to-C
parser be aware of when porting the parser to another
environment.

II. Related Work

Mueller et al. proposed a system called Glacier, which
compiles SQL-based stream queries to high-throughput
hardware configurations [6]. This work took five basic
queries (four of which, Q1 to Q4, are listed in Fig. 3)
as application examples, and used FPGA as its hardware
platform. It essentially proposed how to “map” each of

64b64b

Memory

Controller
PCIExpress

Embedded

CPU

On-chip Bus

Ingress FIFO

(256W)

Egress FIFO

(256W)

DRP Core

Evaluation Chip in the Kit

To/from host PC

512 x 8b

2p SRAM

Reg Reg

8b

ALU

8b

ALU

Reg Reg

PE

State

Transition

Controller

512 x 8b

2p SRAM

16b

MPY

16b

MPY

16b

MPY

8k x 8b

1p SRAM

32b

MPY/DIV

External DRAM

Fig. 2. Architecture of DRP.

CREATE INPUT STREAM Trades (
 Seqnr int, -- sequence number
 Symbol string(4), -- valor symbol
 Price int, -- stock price
 Volume int) -- trade volume

SELECT Price,Volume
 FROM Trades
 WHERE Symbol=”UBSN”
 INTO UBSTrades

SELECT Price,Volume
 FROM Trades
 WHERE Symbol=”UBSN” AND Volume>100000
 INTO LargeUBSTrades

SELECT count() AS Number
 FROM Trades [SIZE 600 ADVANCE 60 TIME]
 WHERE Symbol=”UBSN”
 INTO NumUBSTrades

SELECT wsum(Price,[.5,.25,.125,.125] AS Wprice
 FROM (SELECT * FROM Trades
 WHERE Symbol=”UBSN”)
 [SIZE 4 ADVANCE 1 TUPLES]
 INTO WeightedUBSTrades

Q1:

Q4:

Q3:

Q2:

Schema:

Fig. 3. Example queries and schema of incoming stream.

SQL primitives to a corresponding hardware template,
and then connects them as they are specified in queries
provided to the system. This idea was extended in many
ways and became the basis of several related works such
as [4].

One of the authors of this paper, on the other hand,
has proposed an advanced framework for compiling SQL
based continuous query with user-defined C/C++ func-
tions. The system realizes 20Gbps bit stream processing
on FPGA [2] and exploits HLS not only for compiling the
user-defined C/C++ functions but also the C codes that
are parsed from standard SQL queries by their original
parser. Our work tries to apply this parsing method to
DRP, jointly using the HLS tool bundled to it.

- 311 -

Query B Query Ain_tuple
tuple

out_tuple

SELECT wsum(Price,[.5,.25,.125,.125]) AS Wprice
 FROM (SELECT * FROM Trades
 WHERE Symbol=”UBSN”)
 [SIZE 4 ADVANCE 1 TUPLES]
 INTO WeightedUBSTrades

Query A

Query B

Trades queryA (Trades in_tuple)
{
 tuple = some_query_processingA(in_tuple);
 return tuple;
}

Trades queryB (Trades in_tuple)
{
 tuple = some_query_processingB(in_tuple);
 return queryA(tuple);
}

void main()
{
 /* Pipeline loop */
 while (1) {
 Trades in_tuple = receive_tuple();
 out_tuple = queryB(in_tuple);
 send_tuple(tuple)
 }
}

(a)

(b) (c)

Fig. 4. C function calls for nested queries.

III. Evaluation Platform

As a case study, we used Dynamically Reconfigurable
Processor (DRP), a processor that is commercially avail-
able [5]. DRP’s architecture is shown in Fig. 2. It has
a dedicated development environment which features an
HLS tool that enables developers to design hardware in C.
We chose DRP as our evaluation platform for two reasons:
it features a state-of-the-art HLS tool which makes DRP
probably the most easiest hardware platform for software
engineers to utilize, and its evaluation kit is provided as
an ExpressCard which allows handy evaluation.

IV. SQL-based Stream Processing Language

In our work, we use SQL-based stream processing lan-
guage as an application description language. Fig. 3 shows
some example queries. The schema in Fig. 3 specifies the
fields that stream named “Trades” has. The tuples from
the stream are processed according to the queries (Fig. 3,
Q1 to Q4) which consists of the following clauses:

• SELECT clause specifies the fields of the outgoing
stream.

• FROM clause specifies the input stream.

• WHERE clause specifies the conditions for selecting the
tuples.

• INTO clause specifies the name of the outgoing
stream.

Additionally, some queries have aggregation functions
in their SELECT clauses (Q3 and Q4 in Fig. 3). Aggre-
gation functions calculate some measures from a certain
range of tuples in the stream, which is specified by a win-
dow written in the FROM clause with its size and sliding
interval (e.g. Q3 counts the number of tuples whose sym-
bol is “UBSN” within 600 seconds, and Q4 calculates the
weighted sum of the stock prices from the previous four
tuples).

V. Our Approach

Generally, hardware development procedure can be di-
vided into two stages; the first is to fix the processing ar-
chitecture which involves specifying the I/O or where to
pipeline, and the second is to arrange the wires, registers
and memories so that the circuit meets the requirements
such as delay or resource amount.

As well as [7] the parser converts SQL to HLS code
written in C, and then the generated HLS code is compiled
to hardware configuration by HLS tool (Fig. 1). In other
words, the compilation process is divided into two stages:

1. Parser: specifies the architecture that is suited to
SQL-based stream processing.

2. HLS tool: synthesizes and optimizes hardware con-
figurations.

In this work, we use an existing HLS tool that is bundled
with DRP, therefore hereafter in this paper, we look only
into the parser.

A. Generalization of Queries into Abstract Hardware

We first generalize the query structure to abstract hard-
ware modules in order to allow any queries to be converted
into hardware configurations.

First of all, whether there are any sub queries inside
the query or not is determined. To find a sub query, we
look inside the FROM clause. If there is a sub query (Fig.
4a), there is going to be two query modules between the
input and output (Fig. 4b), otherwise, there will be only
one query module.

The query module is described in Fig. 5a. It con-
sists of three parts, selection module, slide timing mod-
ule and aggregation module. However, if the query does
not use aggregation, the query module only has the se-
lection module. The output of selection module is sent
out as an output tuple in such case (e.g. Q1 and Q2).
The selection module asserts the selected signal if the

- 312 -

Slide timing

module

Selection

module

Aggregation

module

slide

some

fields

(time)

in_tuple selected
out_tuple

Query module

valid

(a)

(b) (c)

<Tuple type> queryX (<Tuple type> in_tuple)
{
 if (in_tuple.valid) {
 if (sliede=window_slide_check(valid[,time])) {
 out_val = aggregate(w);
 slide_window(w);
 }
 if (selected=select()) {
 w[0] = pre_calc(w[0],slide,<some fields>);
 }
 }
 out_valid = <slide|selected> (*)

 out_tuple = pack(out_valid,out_tuple);
 return <out_tuple|queryY(out_tuple)>;
}

Done in slide timing module.

Done in selection module.

Done in aggregation module.

(*) slide is selected if windowing is required,

otherwise, selected is selected.

slide

Aggregate

w[0] w[1] w[2] w[N-1]

Pre-

calc.
valid

some fields

Aggregation module

out_val

Fig. 5. Query module architecture and its code.

tuple satisfies the conditions specified in WHERE clause
(e.g. Symbol="UBSN" AND Volume>100000, in Q2), or
otherwise negate it. The slide timing module monitors
the incoming tuples and notifies the aggregation module
of the slide timing by asserting the “slide” signal. The
slide timing can be detected by counting the valid tuples,
when tuple-based windowing is used, or by monitoring
the timestamp of the incoming tuples, when time-based
windowing is used.

The aggregation module consists of three components,
a shift register (w[0] to w[N-1]), an aggregation unit and
a pre-calculation unit (Fig. 5b). The shift register holds
the values that are used by the aggregation unit. The
number of registers is determined by dividing the window
size by sliding interval. When the registers receive “slide”
signal from the slide timing module, each register sends
its content value to the next register. The aggregation
unit collects the values from the shift register and out-
puts the aggregation result. Pre-calculation unit updates
the content of w[0] whenever there is a valid input tuple.
What the pre-calculation unit does depends on the aggre-
gation specified in the query. For example, when count(·)
is specified (Q3), the pre-calculation unit increments the
value in w[0], initializing it by zero when “slide” is as-
serted. Aggregation unit, then, collects the values in the
registers and adds them up.

B. Mapping Abstract Hardware to C Code

In the generated C code, the main function first calls
the function that corresponds to the most inner query
(Fig. 4c), giving the input tuple that was received in
receive_tuple(·). The query function calls the query
function that corresponds to the next inner query in the
return statement after some operations to the query. The

most outer query function returns the tuple itself af-
ter some operations to it. Finally, when the returned
tuple reaches the main function, it becomes an output
(send_tuple(·)).

The functionalities of the query modules are mapped
to C code as shown in Fig. 5c. The operations such as
slide timing module checking the timing and asserting the
“slide” signal, or selection module checking the conditions
specified in the WHERE clause of the query and asserting
the “selected” signal, are mapped as conditions in if state-
ments. This is because whether the operations in aggrega-
tion units are executed depends on these conditions, and
therefore, the operations that depend on these conditions
are executed under the corresponding if statements. If
the query does not require windowing, the operations of
slide timing module and aggregation module are omitted
in the code.

C. Shallow Hardware Optimization in C Code

As shown in Fig. 4, there is a pipelining directive just
before the while loop in the main function. Thanks to
the HLS tool, all a parser developer has to do in order to
pipeline the loop is to write this directive. However, be-
fore we pipeline the loop, some preparations must be done
to the code. First, loops cannot have inner loops. We use
another kind of directive to unroll the inner loops. This
directive is also specified right before the loop, and the
HLS tool will automatically unrolls the loop. The other
preparation for the loop is to design the hardware archi-
tecture, which is already done in the abstract hardware,
so that it can be efficiently pipelined. In our code, there
is a “valid” flag in the tuple with the intention of doing
this. The “valid” flag enables the hardware to receive and
send tuples at a constant speed, which leads to making
the pipelined loop efficient.

- 313 -

Another optimization done in the code is to burst access
the memory. The DRP evaluation kit we used not having
an network interface, it has to send and receive tuples to
and from the external DRAM. The HLS tool we used has
a featured function (which is hidden in receive_tuple(·)
and send_tuple(·)) to do this. This feature requires a
predictive numbers of input and output tuples, therefore
the optimization we made in order to efficiently pipeline
also profit this optimization. Note that this is the only
optimization we made that is specific to DRP.

VI. Evaluation

We compared the performance of the codes that were
directly written in HLS C, and the codes generated by
our parser from Q1 to Q4 (Fig. 6). We did not optimize
the codes directly written in HLS C because optimization
would be difficult for software engineers who generally do
not have hardware development skills. Since the intended
users of our parser are those who do not have hardware
development knowledge, it is fairer to compare with non
optimized HLS codes.

Synthesis was done by DRP tool which is a development
tool suite bundled with the DRP evaluation kit. The syn-
thesis tool included in DRP tool is based on CyberWork-
Bench which was developed by NEC [9]. The generated
C codes are fully capable of synthesizing into hardware
configurations unless the resource usage exceeds what is
available on DRP[8]. DRP can be driven at various clock
speeds and DRP tool has a functionality to search the op-
timal clock speed for the application. Each result shown
in Fig. 6 was measured at such clock speed.

For reference, we measured the throughput of Intel Core
i5-2520M processor (2.5GHz) running Q1 (horizontal line
in Fig. 6). The figure shows that the throughput of HLS C
codes written without hardware development knowledge
is about the same as that of the CPU. When using our
parser, the throughput was more than twice as fast as the
CPU. However, when we consider the power efficiency,
assuming that the DRP consumes 500 mW and CPU 5
W, the DRP was 24 times more efficient than the CPU.

As long as the queries consist of SELECT, FROM, WHERE,
and INTO clauses and the hardware resources are suffi-
cient, the DRP’s throughput will remain as high as shown
in Fig. 6 because the system can be pipelined as shown in
Fig. 4. However, when a query contains GROUP BY or JOIN
clauses, which are outside the scope of this paper, the
throughput tends to go down vastly. [6] suffers from re-
duction of throughput when dealing with GROUP BY clause
because it requires a CAM to implement a grouping func-
tionality. JOIN is a very difficult operation that many
works have been seeking its efficient implementation on
hardware[1, 4, 6]. Building translation functionalities of
these clauses into our system is an important part of our
future work.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

Naive C w/o
HW knowledge

SQL to C Parser

T
hr

ou
gh

pu
t [

M
bp

s]

Q1
Q2
Q3
Q4

Q1 (CPU)

Fig. 6. Throughput comparison between naive C written without
hardware development knowledge and parsed C.

VII. Discussion

One of the metrics that signifies the usage of a parser,
besides the absolute performance of the resulting hard-
ware, is how well the hardware’s potential is extracted.
To evaluate such significance, we measured the bandwidth
usage of the generated hardware. Table I shows how ef-
ficiently the input bandwidth of DRP was used. Input
bandwidth is the most critical limitation that constrains
the overall throughput. Therefore, the input bandwidth
usage can be a good barometer for evaluating how effi-
cient the hardware is used. According to the table, over
90% of the potential of DRP was extracted by using the
parser, whereas only 50% of the potential was extracted
without it.

The cost-consuming and hardware dependent low level
operations such as wiring or scheduling were delegated
to the HLS tool. There were only three optimizations
that had to be done by the parser that involve hardware
development knowledge: 1) specifying which loop to be
pipelined, 2) enabling the memory burst accessing option,
and 3) providing the basic architecture in order to pipelin-
ing and memory burst accessing to be effective. Among
these, the burst memory accessing option was the only
optimization that was hardware specific in the architec-
tural level. This means that the parser can be used in
various hardware architectures as long as the HLS tool
provides the abstracting function for controlling the I/O.
Since a controller of the I/O is one of the most difficult
component to design in lower levels and therefore requires
hardware development knowledge, and highly depends on
the hardware architecture, it can be said that the parser
is providing a good portability.

VIII. Conclusion

In this paper, we showed that the concept of SQL-to-C
HLS based compiler, proposed in [7] using an FPGA, was
effective on DRP which features a dynamically reconfig-
urable architecture. The HLS C code was compiled to
hardware configuration by a state-of-the-art proprietary

- 314 -

TABLE I
Usage of input bandwidth.

Query Hand written C SQL to C Parser
Q1 49.6% 90.8%
Q2 50.4% 91.7%
Q3 49.8% 96.5%
Q4 33.5% 96.8%

HLS tool that is customized to DRP. The results of the
evaluation show that the parser enables software engineers
to develop stream processing hardware that is 24 times
power efficient than a common CPU, or twice as fast as
directly written HLS C code without any hardware devel-
opment knowledge.

The SQL-to-C parser provided portability to SQL-to-
hardware compiler to work on DRP, by delegating the
cost-consuming low level optimization of DRP to the HLS
tool, and utilizing the high level function for controlling
the I/O which is dependent to DRP.

The optimizations except the I/O done by the parser do
not depend on DRP at the architectural level as long as
the synthesized hardware configuration does not violate
the hardware limitation. Therefore, the only aspect of
DRP that a developer of a SQL-to-C parser should be
aware of is the I/O. This tendency can be generalized to
various kinds of reconfigurable hardware.

The limitation of this work is that the sample queries
we evaluated were rather simple. We will improve our
parser and consider larger or more complex queries that
include grouping functionality.

Acknowledgement

We are deeply grateful to Koichiro Furuta, Taro Fujii,
Takeshi Inuo, and Takao Toi at Renesas Electronics Cor-
poration for their helpful discussion and support. This
work was partially supported by JSPS Grant-in-Aid for
Challenging Exploratory Research (No. 24650033).

References

[1] E. S. Fukuda, H. Kawashima, H. Inoue, T. Fujii,
K. Furuta, T. Asai, and M. Motomura. C-based adap-
tive stream processing on dynamically reconfigurable
hardware: a case study on window join. In Proceed-
ings of the 9th international conference on Reconfig-
urable Computing: architectures, tools, and applica-
tions (ARC), 2013.

[2] H. Inoue, T. Takenaka, and M. Motomura. 20Gbps
C-based complex event processing. In Proceedings of
the 2011 21st International Conference on Field Pro-
grammable Logic and Applications (FPL), 2011.

[3] M. Kitsuregawa. Challenge for info-plosion. In Pro-
ceedings of the 18th international conference on Algo-
rithmic Learning Theory (ALT), 2007.

[4] T. Miyoshi, H. Kawashima, Y. Terada, and T. Yoshi-
naga. A coarse grain reconfigurable processor archi-
tecture for stream processing engine. In Proceedings of
the 2011 21st International Conference on Field Pro-
grammable Logic and Applications (FPL), 2011.

[5] M. Motomura. A dynamically reconfigurable proces-
sor architecture. Microprocessor Forum, 2002.

[6] R. Mueller, J. Teubner, and G. Alonso. Streams on
wires - a query compiler for FPGAs. Proceedings of
the VLDB Endowment, Vol. 2, No. 1, 2009.

[7] T. Takenaka, M. Takagi, and H. Inoue. A scalable
complex event processing framework for combination
of SQL-based continuous queries and C/C++ func-
tions. In Proceedings of the 2012 22nd International
Conference on Field Programmable Logic and Appli-
cations (FPL), 2012.

[8] T. Toi, T. Awashima, M. Motomura, and H. Amano.
Time and space-multiplexed compilation challenge for
dynamically reconfigurable processors. In IEEE In-
ternational Midwest Symposium on Circuits and Sys-
tems, 2011.

[9] K. Wakabayashi and B. C. Schafer. ”All-in-C” Be-
havioral Synthesis and Verification with CyberWork-
Bench, pp. 113–127. Springer Netherlands, 2008.

- 315 -

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

