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Abstract— Frequent itemset mining attempts to
find frequent subsets in a transaction database. In
this era of big data, demand for frequent itemset min-
ing is increasing. Therefore, the combination of fast
implementation and low memory consumption, espe-
cially for stream data, is needed. In response to this,
we optimize an online algorithm, called Skip LC-SS
algorithm [1], for hardware. In this paper, we present
an efficient architecture based on this algorithm.
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I. Introduction

Data stream mining for frequent itemsets (DSM-FI) is
one of the most important and fundamental challenges
of online data stream mining. DSM-FI cannot store an
entire stream in memory and perform a single scan be-
cause the stream is treated as continuous. Counting the
occurrences of all itemsets is also unrealistic due to the
constraint of memory capacity. Therefore, substantial
research has focused on the one pass approximation al-
gorithm [3]. For example, Lossy counting [3] eliminates
infrequent itemsets for each transaction. The drawback
to this algorithm is that a sudden burst of stream data
can produce memory overflow. On the other hand, the
space saving [4] and Skip LC-SS algorithms address this
memory overflow by fixing the number of stored itemsets.
Unfortunately, this process requires substantial memory
access and tends to produce memory access bottlenecking
during the processing in CPU. We propose a coprocessor
architecture that enables the high-speed processing of fre-
quent itemset mining (FIM) using FPGA, which does not
contain large memory stores but has substantial stores of
small memory and can access them simultaneously.

II. Background and Preliminary Work

A. RELATED WORK

FIM implementation using FPGAs has already been
studied. Baker et al. [5] proposed the first architecture for
Apriori. In 2013, the architecture for Eclat was presented
by Zhang et al. [6]. However, these architectures cannot
process sudden bursts of stream data.

B. SKIP LC-SS ALGORITHM

The skip LC-SS algorithm stores a fixed number of
itemsets. Therefore, only an amount of O(k) memory
space is required. Here, constant k represents the number
of stored itemsets. Itemset e is stored using a tuple, such
as ⟨e, count(e)⟩, in entry table D, where count(e) is the
number of occurrences of e. In order to accelerate the
implementation process, this algorithm skips a portion of
the process under certain conditions. A brief outline of
this baseline algorithm follows.

1. Consider itemset E = {e1, e2, ...e2|Ti|−1} in the trans-
action Ti as follows:

(a) if ⟨ei, count(ei)⟩ ∈ D, count(ei) + = 1,

(b) else if |D| < k, store new entry ⟨ei, 1⟩ in D,

(c) else register ei as replacement candidate set
(cs).

2. Replace me with cs, written ⟨c,∆(i) + 1⟩, where c is
in cs and ∆ is the error count ∆(1) = 0.

3. Update ∆(i+ 1) as follows:

A : |me| > |cs|,∆(i+ 1) = count(cs(i)),

B : |me| ≤ |cs|,∆(i+ 1) = ∆(i) + 1.

Example Fig.1 shows how to update the entry table
using this algorithm. If i = 3, the replacement target can
be freely selected from me. If i = 4, although cs is greater
than ms, only one element of cs must be replaced.
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Fig. 1. Entry table update from stream S consists of three
transactions: {a, b}, {a, c}, and {a, c, d}, with k = 4.
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III. Architecture

An FPGA has parallel accessible memory (BRAM), but
this memory is much smaller than that used in the soft-
ware. Therefore, it is impossible to maintain the entry
table as an array. We solve this problem by using a tree
structure. In order to avoid an increase in the amount of
data in pointer-based approach, we consider a binary-tree
structure, which can be searched using the shift operation
of the memory address. If the address of a parent node is
n, its child node can be accessed using the left-shift opera-
tion. This means the address of a child node is 2n, 2n+1
[Fig. 2(B)]. Therefore, trees do not need to store node
addresses. If a parent node has the same item as the
input item, then side 1 should be searched. Otherwise,
side 2 should be searched. In the former case, the search
unit stores the opposite node’s address in the stack and,
once it reaches the leaf node, resumes the process from
the address stored in the stack [Fig. 2(A)].
In addition, forming a tree plurality, in which each root

represents an item stored in the small memory, allows us
to simultaneously update each entry table. In order to
access the BRAM that holds each item tree, the BRAM
tree’s addresses and each item must be stored. Mem-
ory stores the number of occurrences of each item, which
enables the removal of infrequent items from the transac-
tion by comparing ∆ with the number of item occurrences
given by the BRAM address. For more information, refer
to the SS-ST algorithm [1] [Fig. 3].
Items ei in transaction T = {e1, e2, ..., en} are

given to each item tree by the distributor, i.e.,
{e1, e2, ..., en}, {e2, ..., en}, {en} [Fig. 4]. This module de-
termines whether the transaction length is greater than a
certain length and terminates the transaction processing
(t2-skip [1]).
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The tree structure allows itemsets to be stored using
less memory space than the method in which entry ta-
bles store itemsets in strings. Still, it cannot create entry
tables as large as those created using the software. Fur-
thermore, data that has already been replaced is, again,
frequently immediately replaced. Therefore, we partially
store itemsets in strings. Each string represents all the
subsets of the string. This method reduces memory con-
sumption from O(2L ∗L) to O(L), where L is the transac-
tion length. Also, in the best case scenario, this method
processes replacement in O(2L). If the itemset about to
be replaced is stored in a string, we can reduce the cost of
deleting and building trees. Morevoer, the FPGA simul-
taneously addresses both string and tree data. Therefore,
this method has a high affinity with hardware.

IV. Conclusion

In this paper, we proposed an efficient architecture for
frequent itemset mining from data streams. This archi-
tecture is an optimized skip LC-SS algorithm used for
hardware. It accelerated implementation by addressing
the CPU’s memory access bottlenecking, e.g. replace-
ment, using FPGA parallelism. In the future, we hope
to make some improvements, especially as they pertain
to the data structure.
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