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Abstract—We propose a novel LSI architecture that
allows silicon LSIs to implement mutual-coupled neu-
ral networks. The architecture reduces wiring areas
of Hopfield neural networks by using CDMA pro-
tocols for communicating between neurons. As an
example, we propose a CDMA-Hopfield neural net-
work, aiming at examining retrieval properties of the
network. Extensive simulation results indicated that
the CDMA-Hopfield neural network of N neurons
could retrieve signal patterns from P memory pat-
terns when P/N ≈ 0.1.

Keywords—CDMA, integrated circuits, neural net-
works

I. Introduction

In mutual-coupled neural networks, the number of
connections between neurons increases exponentially as
the number of neurons increases. This increase in con-
nections (wires between neurons) prevents us from im-
plementing large-scale neural networks on silicon VLSIs
because of the increase in wiring areas. Thus, imple-
menting mutual-coupled (fully connected) neural net-
works such as the Hopfield neural networks [1][2][3] is
difficult . To overcome this difficulty, we have to develop
a new system architecture that differs from conventional
ones in which connections between neurons correspond
to the physical wiring on a chip.

On the other hand, optical neural networks, which
utilize lights to represent the connections between neu-
rons, have been proposed in the literature [4]. In the net-
works, optical signals (output of neurons) travel through
a three-dimensional medium such as air. Constructing a
large-scale network with optical wires is thus easy com-
pared with implementing the network on VLSIs. How-
ever, implementing the optical network on silicon VLSIs
is difficult because of the terrible mismatch of the fab-
rication processes in the optical devices and VLSIs. In
this report, we propose a new architecture that enables
us to implement a large-scale neural network on silicon
VLSI by using current device manufacturing technology.
The development of large-scale neural networks leads to
useful applications that utilize novel functions of neural
networks.

II. Implementing Fully Connected Neural
Networks on 2D Silicon LSIs

Figure 1 shows the conventional architecture of fully
connected neural networks. Because the network con-
sists of N -neurons and N2-synapses, the total area of a
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Fig. 1. Conventional architecture of fully connected neural
networks (N neurons and N(N − 1) synapse devices)
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Fig. 2. Fully connected neural network with uniform con-
nection strength (N neurons and N synapse devices)

synapse device increases exponentially as N increases.
The Hopfield neural network is a typical example of a
fully connected neural network. However, the number
of synapse devices in a fully connected neural network
with uniform connection strength can be significantly
reduced, as shown in Fig. 2, because each input of the
neurons is given by a common input that corresponds
to the sum of the outputs of all neurons [5]. This 2D ar-
chitecture is very suitable for implementing the network



on a 2D-silicon VLSI. To construct the Hopfield neu-
ral network using the 2D-VLSI architecture, each wire
must be shared with all the neurons. The sharing (mul-
tiplex) method is commonly used in telecommunication
systems [6][7]. A CDMA bus interface for conventional
digital systems has also been proposed in the literature
[8][9]. In the following section, we propose a novel VLSI
architecture that is designed for constructing a large-
scale Hopfield neural network using CDMA (one of the
multiplex method). The network reduces the number of
physical connections between neuron circuits.

III. Networks Using the CDMA System

Modern telecommunication systems make use of time
division multiple access (TDMA), frequency division
multiple access (FDMA), and code division multiple
access (CDMA) systems for multiplex operation. As
shown in Fig. 3, TDMA and FDMA operate by divid-
ing time and frequency while CDMA operates by divid-
ing a channel into identifying codes that are assigned
to each user [6][7][10][11]. Because the TDMA system
divides a transmission channel into time slots, configur-
ing a neural network with this system would mean that
only one neuron could transmit a signal at one time
(other neurons would have to wait). The TDMA sys-
tem is therefore not conducive to a neural network that
performs real-time processing. The FDMA or CDMA
system, however, should be appropriate for configuring
a real-time system.

The signal demodulation process in CDMA has the
task of separating signal components from the trans-
mitting signal (the signal from the other party) and
noise components (signals unrelated to the other party).
This signal/noise separation computation is the same as
that of individual neuron inputs (local fields) in a Hop-
field neural network, and it was this realization that
prompted us to study a CDMA-Hopfield neural network
that combines a Hopfield neural network and a CDMA
communications system.

A. CDMA System

The CDMA system has found widespread use in the
field of mobile communications. In contrast to TDMA
and FDMA, CDMA can transmit and receive commu-
nications even if different signals coexist in time or fre-
quency [10][11]. That is, CDMA allocates a specific code
(spreading code) to each user and enables them to com-
municate by having the system check for these codes on
the receiver side. The following explains the basic prin-
ciples of the CDMA system using the Direct-Sequence
CDMA (DS-CDMA), which is one type of CDMA, as
an example.

The CDMA system multiplies the information signal
by an unrelated noise signal (spreading code) thereby
spreading the frequency band (called spreading). In this
regard, the DS-CDMA uses a periodic random sequence
of numbers that takes on the values of ±1 as a spreading
code. Figure 4 shows the mechanism behind the modu-
lation and demodulation in the DS-CDMA for two users.

In this example, each of two information signals
(data1, data2) takes on the values of ±1 in amplitude.

(c) CDMA

channel1
channel2
channel3
channel4

time

frequency

power

(b) FDMA

ch
an

ne
l2

ch
an

ne
l1

ch
an

ne
l3

ch
an

ne
l4

time

channel3
channel2

channel1

channel4

(a) TDMA time

frequency

frequency

Fig. 3. Multiplex method used in modern telecommunication
systems

The value of such a signal changes every time period
T , called the symbol rate. On the transmitter side, the
system multiples these information signals using spread-
ing codes (code1, code2) that change every time pe-
riod Tc(< T ), called the chip rate. This multiplication
spreads the frequency band having the information sig-
nal (spreading operation), and the resulting bandwidth
is determined using the ratio of the symbol to chip rate
(T/Tc). For T/Tc equal to N , called the spreading fac-
tor, the frequency band that has the information sig-
nal spreads out by about N times (N = 6 in Fig. 4).
The system now takes the spread information signals of
each user and adds them together on a wireless channel
for transmission. Then, on the receiver side, the system
multiplies the received signals using the spreading codes
of each user that wishes to communicate (despreading
operation). The signals resulting from this operation
are then integrated over symbol rate T of the original in-
formation signal leaving its high-frequency components.
These operations enable information to be conveyed be-
tween users. The restored signal Di(n) of user i obtained
after a series of calculations can be expressed as follows.

Di(n) =
1

T

∫ (n+1)T

nT

ci(t)

P∑
a=1

da(t)ca(t)dt, (1)

Here, T is the symbol rate, ci(t) is the spreading code of
user i, di(t) is the information signal of user i, n is the



spreading operation

transmitter

user1

user2
T/N (N=6)

recovered data 

1
-1

1 1
-1 -1

1 1
-1 -1

1
-1 integration

integration

wireless channel

T
2

-2

despreading operation

code1

code2

receiver

T

1
-1

1
-1

1
-1 code1

code2

data1

data2T

1

-1

1
-1 -1 -1

1 1

1
-1

1
-1

1
-1

Fig. 4. Mechanism behind modulation and demodulation in DS-CDMA for two users

nth bit of the information signal, and P is the number
of users.

B. CDMA-Hopfield Neural Network

The following equation represents the dynamics of a
Hopfield neural network.

τ
dui

dt
= −ui +

N∑
j 6=i

Jijf(uj), (2)

Here, uiis the membrane potential of a neuron, f is the
transfer function, and N is the number of neurons. In
addition, Jij is the connection strength given as follows
(P is the number of patterns to be stored, and ξµ is the
µth pattern to be stored).

Jij =
1

N

P∑
µ=1

ξµ
i ξµ

j , (3)

The Hopfield associative memory model normally uses
a sigmoid function that monotonically increases as a
transfer function. The use of a non-monotonic function
for a neuron’s transfer function, however, means new
features for the network. For example, storage capacity
could increase by about three times, or a phase could
appear in which noise components that hinder memory
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Fig. 5. Neuron unit of CDMA-Hopfield neural network

recall completely disappear [12][13]. Accordingly, when
using a non-monotonic transfer function to construct a
Hopfield neural network using a CDMA system, disap-
pearing CDMA noise may affect it. Anticipating this
effect, we adopted a Hopfield type of network to be op-
erated in continuous time.

Figure 5 shows the configuration of a neuron unit in
a Hopfield neural network using a CDMA system. To
transfer the signal in the CDMA system, neuron output
f(ui) is multiplied by a spreading code [cif(ui)]. The
received signal here is the sum of signals sent by all neu-
rons. In the CDMA system, the received signal is sub-
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Fig. 6. Results of associative memory simulation

jected to a despreading operation and then integrated
over symbol rate T and finally divided by T . A Hopfield
neural network, however, operates in continuous time,
which means that dividing time and integrating as in
the CDMA computation of (1) cannot be done. This
integration, though, can be included in the dynamics of
a Hopfield neural network, as described below.

The dynamics of this Hopfield neural network can be
expressed as follows.

τ
dui

dt
= −ui +

1

τ

N∑
j 6=i

Jij

(
cj

N∑
k=1

ckf(uk)

)
, (4)

Here, an increase or decrease in ui follows a time de-
lay on the order of time constant τ . That is, ui is the
timewise superpositioning of the ui value τ seconds be-
fore (time integration from arbitrary time to to to + τ).
Thus, if τ is made the symbol rate (because the neuron
output is not a periodic signal), (4) will include the in-
tegration computation on the right side of the CDMA
computation of (1).

C. Simulation Results

Associative memory simulations for the CDMA-
Hopfield neural network of (4) were performed. We
stored 20 random patterns in the network, which had
200 neurons (N = 200). In these simulations, we
wished to verify whether phenomena such as increases
in storage capacity and disappearances of noise between
stored patterns as seen in Hopfield neural networks that
are non-monotonic would occur in one that are CDMA
based. We therefore simulated a CDMA-Hopfield neu-
ral network using a non-monotonic transfer function.
Furthermore, in addition to the above case of 20 stored
patterns, we also performed simulations for storing 40
patterns in the same network.

In the network, a noise pattern consisting of 40 in-
verted bits within a stored pattern was taken as an ini-
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Fig. 7. Changing of membrane potential over time in recall
process

tial value, and 50 noise patterns were generated for each
stored pattern as initial values.

Figure 6 shows the simulation results. Associative-
memory results for an ordinary Hopfield neural network
(not using CDMA) are also shown for comparison pur-
poses. The horizontal axis represents initial patterns
whose noise patterns are based on the corresponding
stored pattern, while the vertical axis indicates stored
patterns that are retrieved. We note here that some
retrieved patterns did not match any stored pattern.
When this happens, the system calculates the corre-
lation between the retrieved pattern and each of the
stored patterns and counts the stored pattern showing
the highest correlation as a retrieved pattern. The num-
ber of retrievals for a certain stored pattern by an initial
pattern is indicated in the figure on a grayscale basis: re-
trieving the highest possible number of stored patterns
is indicated in white while retrieving nothing at all is
indicated in black.

For a Hopfield neural network storing 20 (or 40) pat-
terns, we see that the number of diagonal elements was
20 (or 40), demonstrating that memory recall is correct.
For a CDMA-Hopfield neural network storing 20 pat-
terns, the number of times that a pattern other than a
stored pattern was retrieved was small (discussed later).
For the same network storing 40 patterns, however, cor-
rect recall was nearly impossible. The same kind of sim-
ulation was also performed for a CDMA-Hopfield neural
network using a monotonic transfer function, and simi-
lar results were obtained.

The results of Fig. 6 do not provide a complete assess-
ment of associative-memory capability. We therefore de-
fine recall rate (Rr) as follows to provide a quantitative



assessment of associative memory:

Rr =
Ncr

Nip
, (5)

where Rr, Ncr, and Nip represent the recall rate, the
number of patterns correctly recalled, and the number
of initial patterns given, respectively. In this study, cor-
rect recall was assumed to occur when the correlation
between a stored (the basis of an initial value) and a
retrieved pattern exceeded 0.95. When 20 stored pat-
terns in 200 neurons were used, the recall rate for a
CDMA-Hopfield neural network using monotonic neu-
rons was 0.898, and that for one without these neurons
was 0.899. While these values represent a drop in perfor-
mance compared to the 1.000 recall rate of an ordinary
Hopfield neural network, they nevertheless demonstrate
that memory recall was being accomplished. However,
when 40 stored patterns were used, the recall rates of
the networks with and without the monotonic neurons
were 0.000 and 0.001, respectively. These results indi-
cate that virtually no memory recall was being accom-
plished, suggesting that a CDMA-Hopfield neural net-
work does not possess characteristics such as a noise-
disappearance effect or an increase in memory capacity
due to the use of non-monotonic neurons.

We next extracted three of the 200 neurons and exam-
ined the change in membrane potential over time in the
recall process. Figure 7 shows the simulation results of a
Hopfield neural network using a transfer function that is
non-monotonic. When using no CDMA, the membrane
potential was essentially ±θ (θ is the threshold value
of a non-monotonic transfer function and is here set to
0.4) for both the 20 and 40 stored patterns (Figs. 7(a),
(b)). In contrast, the membrane potential in a CDMA-
Hopfield neural network was unstable, and its amplitude
was nearly zero.

This is because noise due to spreading remains at the
neuron input because complete restoration cannot be
achieved at the CDMA communications section.

Denoting the signal restored with a spreading code
at neuron i as Di(n), the CDMA section in a CDMA-
Hopfield neural network is given as follows.

Di(n) =
1

T
ci(t)

P∑
a=1

da(t)ca(t), (6)

Here, di(t) is the information signal transmitted by
neuron i, n is the nth bit of the information signal,
ci(t) is the spreading code of user i, T is the symbol
rate, and P is the number of users. The signal com-
ponent of neuron i is di(t), and the noise component

is
∑P

a6=i
da(t)ca(t). Because information signal di(t) and

spreading code ci(t) both take on values of ±1, this noise
component had an average of zero and resembled Gaus-
sian noise with dispersion P . An increase in the number
of users P is accompanied by an increase in noise disper-
sion (approaching white noise). Nevertheless, the fact
that correct recall (Fig. 6) can be performed (for an
N = 200, P = 20 network) is an extremely interesting
result.

D. Network operating in discrete time

In the previous section, we configured a Hopfield neu-
ral network that operates in continuous time using a
CDMA system. Our expectation here was to obtain
an increase in memory capacity and a disappearance of
noise as can be obtained in a Hopfield neural network
consisting of neurons that have a non-monotonic trans-
fer function. For this reason, we configured the network
using a CDMA system that changes form in continu-
ous time and omitted integration at the time of signal
restoration. In contrast, a network that operates in dis-
crete time indicates that a CDMA system that does not
change form can be used. Specifically, letting Td be the
time step of a network operating in discrete time, we
made this Td the same as the symbol rate in the CDMA
system. This indicates that the signal transmitted at
each neuron can be completely restored by integrating
a received signal over Td. This, in turn, means that ex-
act network operation and an increase in scaling can be
achieved.

IV. Conclusion

We proposed a novel VLSI architecture to implement
mutual-coupled neural networks. Sharing one connec-
tion wire with all neurons allows us to implement large-
scale neural networks on silicon LSIs by reducing wiring
areas. As an example, a configuration for a Hopfield
neural network using CDMA was presented. First, an
associative memory simulation was run for that network,
which had 200 neurons. Second, we extracted three
of the 200 neurons and examined the change in mem-
brane potential over time in the recall process. The
first simulation showed that the CDMA-Hopfield neu-
ral network of N neurons could retrieve signal patterns
from P memory patterns when P/N ≈ 0.1. However,
an enhancement in storage capacity due to using non-
monotonic neurons was not observed. The second simu-
lation showed that noise due to spreading remains at the
neuron input because complete restoration cannot be
achieved at the CDMA communications section. We will
hereafter develop a structure for the CDMA-Hopfield
neural network to eliminate noise and will construct a
large-scale Hopfield neural network, one that will have
a higher storage capacity.

References

[1] J. J. Hopfield, “Neural networks and physical systems
with emergent collective computational abilities,” Proc.
Nat. Acad. Sci. U.S , vol. 79, pp. 2554-2558, 1982.

[2] J. J. Hopfield, “Neurons with graded response have col-
lective computational properties like those of two-state
neurons,” Proc. Nat. Acad. Sci. U.S , vol. 81, pp. 3088-
3092, 1984.

[3] J. J. Hopfield and D. W. Tank, ““Neural” Computation
of Decisions in Optimization Problems,” Biol. Cybern.,
vol. 52, pp. 141–152, 1985.

[4] H. Yonezu and K. Tsuji, “Integrated optoelectronic
neuro-devices,” Optoelectronics-Devices and Technol., vol.
8, pp. 73–84, 1993.

[5] T. Asai, M. Ohtani, and H. Yonezu, “Analog Integrated
Circuits for the Lotka-Volterra Competitive Neural Net-
works,” IEEE Trans. Neural Networks, vol. 10, pp. 1222–
1231, 1999.



[6] E. A. Lee and D. G. Messerschmitt, DIGITAL COMMU-
NICATION, Kluwer Academic Publishers, 1988.

[7] W. C. Y. Lee, Mobile Cellular Telecommunications,
McGraw-Hill, Inc., 1995.

[8] B.K. Tan, R. Yoshimura, T. Matsuoka, and K. Taniguchi,
“Dynamically Programmable Parallel Processor (DPPP):
A Novel Reconfigurable Architecture with Simple Pro-
gram Interface,” IEICE Trans. Inf. & Syst., vol. E84-D,
pp. 1521–1527, 2001.

[9] Y. Yuminaka, K. Itoh, Y. Sasaki, T. Aoki, T. Higuchi, “A
Code-Division Multiplexing Technique for Efficient Data
Transmission in VLSI Systems,” IEICE Trans. Electron.,
vol. E82-C, pp. 1669–1677, 1999.

[10] A. J. Viterbi, CDMA : Principles of Spread Spectrum
Communication, Addison-Wesley, 1995.

[11] S. Glisic and B. Vucetic, Spread Spectrum CDMA Sys-
tems for Wireless Communications, Artech Houce, Inc.,
1997.

[12] M. Shiino and T. Fukai, “Self-consistent signal-to-noise
analysis of the statistical behavior of analog neural net-
works and enhancement of the storage capacity,” Phys.
Rev. E , vol. 48, pp. 867–897, 1993.

[13] M. Morita, “Associative memory with nonmonotone dy-
namics,” Neural Networks, vol. 6, pp. 115–126, 1993.


