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Abstract. Collision-based reaction-diffusion computing (RDC) repre-
sents information quanta as traveling chemical wave fragments on an
excitable medium. Although the medium’s computational ability is cer-
tainly increased by utilizing its spatial degrees of freedom [2], our in-
terpretation of collision-based RDC in this paper is that wave fragments
travel along ‘limited directions’ ‘instantaneously’ as a result of the ‘fusion
of particles’. We do not deal with collision-based computing here, but will
deal with conventional silicon architectures of a ‘fusion gate’ inspired by
collision-based RDC. The hardware is constructed of a population of col-
lision points, i.e., fusion gates, of electrically equivalent wave fragments
and physical wires that connect the fusion gates to each other. We show
that i) fundamental logic gates can be constructed by a small number
of fusion gates, ii) multiple-input logic gates are constructed in a sys-
tematic manner, and iii) the number of transistors in specific logic gates
constructed by the proposed method is significantly smaller than that
of conventional logic gates while maintaining high-speed and low-power
operations.

1 Introduction

Present digital VLSI systems consist of a number of combinational and sequen-
tial logic circuits as well as related peripheral circuits. A well-known basic logic
circuit is a two-input nand circuit that consists of four metal-oxide semicon-
ductor field-effect transistors (MOS FETs) where three transistors are on the
current path between the power supply and the ground. Many complex logic
circuits can be constructed by not only populations of a large number of nand
circuits but also special logic circuits with a small number of transistors (there
are more than three transistors on the current path) compared with nand-based
circuits.

A straight-forward way to construct low-power digital VLSIs is to decrease
the power-supply voltage because the power consumption of digital circuits is
proportional to the square of the supply voltage. In complex logic circuits, where
many transistors are on the current paths, the supply voltage cannot be de-
creased due to stacking effects of transistors’ threshold voltages, even though



the threshold voltage is decreasing as LSI fabrication technology advances year
by year. On the other hand, if two-input basic gates that have the minimum
number of transistors (three or less) on the current path are used to decrease
the supply voltage, a large number of the gates will be required for constructing
complex logic circuits.

The Reed-Muller expansion [14, 13], which expands logical functions into
combinations of and and xor logic, enables us to design ‘specific’ arithmetic
functions with a small number of gates, but it is not suitable for arbitrary arith-
metic computation. Pass-transistor logic (PTL) circuits use a small number of
transistors for basic logic functions but additional level-restoring circuits are
required for every unit [18]. Moreover, the acceptance of PTL circuits into main-
stream digital design critically depends on the availability of tools for logic, physi-
cal synthesis, and optimization. Current-mode logic circuits also use a small num-
ber of transistors for basic logic, but their power consumption is very high due
to the continuous current flow in turn-on states [5]. Subthreshold logic circuits
where all the transistors operate under their threshold voltage are expected to
exhibit ultra-low power consumption, but the operation speed is extremely slow
[16, 17]. Binary decision diagram logic circuits are suitable for next-generation
semiconductor devices such as single-electron transistors [15, 20, 6], but not for
present digital VLSIs because of the use of PTL circuits.

To address the problems above concerning low-power and high-speed op-
eration in digital VLSIs, we describe a method of designing logic circuits with
collision-based fusion gates, which is inspired by collision-based reaction-diffusion
computing (RDC) [2, 12, 11]. This paper is organized as follows. In section 2,
we briefly overview collision-based RDC. Then, in section 3, we introduce a
new interpretation of collision-based RDC, especially concerning directions and
speeds of propagating information quanta. We also show basic logical functions
constructed by simple unit operators, i.e., fusion gates, and demonstrate a cir-
cuit’s operation by using a simulation program with integrated circuit emphasis
(SPICE) with typical device parameters. Then, a reconfigurable architecture for
the proposed fusion-gate structure and a possible construction of D-type flip flop
circuits for constructing sequential circuits are presented. Section 4 is a summary.

2 Collision-Based Logical Computation

Dynamic, or collision-based, computers employ mobile self-localizations, which
travel in space and execute computation when they collide with each other.
Truth values of logical variables are represented by the absence or presence of the
traveling information quanta. There are no pre-determined wires: patterns can
travel anywhere in the medium, a trajectory of a pattern motion is analogous
to a momentarily wire [1–3]. A typical interaction gate has two input ‘wires’
(trajectories of colliding mobile localizations) and, typically, three output ‘wires’
(two ‘wires’ represent localization trajectories when they continue their motion
undisturbed, the third output gives a trajectory of a new localization, formed in
the collision of two incoming localizations). The traveling of patterns is analogous
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Fig. 1. Collision-based computing models (a) conservative billiard-ball logic for and
and partial xor computation [8, 9], and (b) nonconservative (dissipative) reaction-
diffusion logic that has the same function as that of (a) [3].

to information transfer while collision is an act of computation; thus, we call the
set up ‘collision-based computing’. There are three sources of collision-based
computing: proof of the universality of Conway’s Game of Life via collisions of
glider streams [7], conservative logic [8], cellular automaton implementation of
the billiard ball model [9], and particle machine [19] (a concept of computation
in cellular automata with soliton-like patterns); see overviews in [2].

The main purpose of collision-based computing is to perform computation
in an ‘empty space’, i.e., a medium without geometrical constraints. Basic toy
models of collision-based computing are shown in Fig. 1. In the billiard ball
logic shown in Fig. 1(a), a set of billiard balls are fired into a set of immovable
reflectors at a fixed speed. As the billiard balls bounce off each other and off the
reflectors, they perform a reversible computation. Provided that the collisions
between the billiard balls and between the billiard balls and the reflectors are
perfectly elastic, the computation can proceed at a fixed finite speed with no
energy loss.

Adamatzky demonstrated that a similar computation can be performed on
excitable reaction diffusion systems [2, 3]. Figure 1(b) illustrates basic logic gates
where instead of billiard ball wave fragments (white localizations in the figure)
travel in an excitable reaction-diffusion medium. In typical excitable media, lo-
calized wave fragments facing each other disappear when they collide. With a
special setup described in [3], those excitable waves do not disappear, but they
do produce subsequent excitable waves.

3 New interpretation of collision-based computing for
digital VLSIs

Adamatzky proposed how to realize arithmetical scheme using wave fragments
traveling in a homogeneous medium [2, 3]. The sub-excitable Belousov-Zhabotinsky
(BZ) system was emulated by a 2+-medium [1], which was a 2D cellular au-
tomaton, where each cell took three states — resting, excited, and refractory,
and updated its state depending on the number of excited cells in its eight-cell
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Fig. 2. Definition of collision-based fusion gate (a) and basic logical circuits using
several fusion gates [(b)-(e)] that produce multiple logical functions.

neighborhood. A resting cell become excited only if it had exactly two excited
neighbors. An excited cell took the refractory state and refractory cell took the
resting state unconditionally, i.e., independently of its neighborhood. The model
exhibited localized excitations traveling along columns and rows of the lattice
and along diagonals. The particles represented values of logical variables. Log-
ical operations were implemented when particles collided and were annihilated
or reflected as a result of the collision. Thus one can achieve basic logical gates
in the cellular-automaton model of a sub-excitable BZ medium and build an
arithmetic circuit using the gates.

A cellular automaton LSI that implements an excitable lattice for BZ sys-
tems has been implemented by one of the authors [10, 4]. Each cell consisted of
several tens of transistors and was regularly arranged on a 2D chip surface. To
implement a one-bit adder, for example, by collision-based cellular automata, at
least several tens of cells are required to allocate sufficient space for the collision
of wave fragments [2]. This implies several hundreds of transistors are required
for constructing just a one-bit adder. Direct implementation of the cellular au-
tomaton model is therefore a waste of chip space, as long as the single cell space
is decreased to the same degree of chemical compounds in spatially-continuous
reaction-diffusion processors.

What happens if wave fragments travel in limited directions instantaneously?
When such wave fragments are generated at the top and end of a pipe (not
an empty space) filled with excitable chemicals, for example, these waves may
disappear at the center of the pipe instantaneously. When two pipes are per-
pendicularly arranged and connected, wave fragments generated at the tops of
the two pipes may also disappear at the connected point. If only one wave frag-
ment (A or B) is generated at the top of one pipe, it can reach the end of the
pipe [AB or AB in Fig. 1(b)]. A schematic model of this operation is shown in
Fig. 2. In Fig. 2(a) (left), an excitable reaction-diffusion medium, where excitable
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Fig. 3. Circuit construction of collision-based fusion-gate for digital VLSIs. (a)
compact-but-slow circuit (two-transistor circuit) and (b) complex-but-fast circuit (four-
transistor circuit).

waves (A and B) may disappear when they collide, is illustrated. In Fig. 2(a)
(right), an equivalent model of two perpendicular directions of wave fragments,
i.e., North-South and West-East fragments, is depicted. The input fragments are
represented by values A and B where A (or B) = ‘1’ represents the existence
of a wave fragment traveling North-South (or West-East), and A (or B) = ‘0’
represents the absence of wave fragments. When A = B = ‘1’ wave fragments
collide at the center position (black circle) and then disappear. Thus, East and
South outputs are ‘0’ because of the disappearance. If A = B = ‘0’, the outputs
will be ‘0’ as well because of the absence of the fragments. When A = ‘1’ and B
= ‘0’, a wave fragment can travel to the South because it does not collide with a
fragment traveling West-East. The East and South outputs are thus ‘0’ and ‘1’,
respectively, whereas they are ‘1’ and ‘0’, respectively, when A = ‘0’ and B = ‘1’.
Consequently, logical functions of this simple ‘operator’ are represented by AB
and AB, as shown in Fig. 2(a) (right). We call this operator a ‘collision-based
fusion gate’, where two inputs correspond to perpendicular wave fragments, and
two outputs represent the results of collisions (transparent or disappear) along
the perpendicular axes. Notice that in this configuration the computation is
performed with geometrical constraints. Figures 2(b) to (e) represent basic logic
circuits constructed by combining several fusion gates. The simplest example is
shown in Fig. 2(b) where the not function is implemented by a single fusion
gate. The North input is always ‘1’, whereas the West is the input (A) of the
not function. The output appears on South node (A). Figure 2(c) represents a
combinational circuit of two fusion gates that produces and and nor functions.
An or function is thus obtained by combining not and and/nor fusion gates in
Figs. 2(b) and (c), respectively, as shown in Fig. 2(d). Exclusive logic functions
are produced by three (for xnor) or four (for xor) fusion gates as shown in
Fig. 2(e).

A collision-based fusion gate receives two logical inputs (A and B) and pro-
duces two logical outputs (AB and AB). CMOS circuits for this gate are shown
in Fig. 3. They receive logical (voltage) inputs (A and B) and produce the logic
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Fig. 4. Classical and fusion-gate logic architectures of multiple-input and and or cir-
cuits. In classical circuits [(a) and (c)], each logical unit consists of six transistors with
constraints for low-power operation; three transistors are on current path between
power supply and ground. In fusion-gate logic [(b) and (d)], each fusion gate consists
of four transistors as shown in Fig. 3(b).

function. The minimum circuit structure based on PTL circuits is shown in
Fig. 3(a), where a single-transistor and logic is fully utilized. When an nMOS
transistor receives voltages A and B at its gate and drain, respectively, the
source voltage is given by AB at equilibrium; in the case of pMOS, that is given
by AB. Although there are just two transistors in this construction, there is a
severe problem, i.e., the operation speed. When a pMOS transistor is turned
off, the output node’s parasitic capacitance is discharged by the leak current
of the pMOS transistor in the off state. Therefore, the transition time will be
rather long, e.g., typically within a few tens of milliseconds when the conven-
tional CMOS process is used, which implies the circuit operates very slowly
compared with conventional digital circuits. Additional resistive devices for the
discharging may improve the upper bound of the clock frequency. However, we
need a breakthrough while satisfying the constraints of a small number of tran-
sistors in a fusion gate. One solution to the operation-speed problem is shown
in Fig. 3(b). The circuit has two additional nMOS transistors just beneath the
pMOS transistors in the two-transistor circuits. If a pMOS transistor is turned
off, an nMOS transistor connected between the pMOS transistor and the ground
discharges the output node, which significantly increases the upper bound of the
operation frequency.

A multiple-input and and or implementation with classical and fusion-gate
logic is shown in Fig. 4. In classical circuits (a) and (c), each logical unit (two-
input and and or) consists of six transistors. As introduced in section 1, to
decrease the power supply voltage for low-power operation, a minimum number
of transistors (three or less) should be on each unit’s current path. Each unit
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circuit has six transistors, so n-input and and or gates consist of 6(n − 1)
transistors (n ≥ 2). On the other hand, in fusion-gate logic (b) and (d), an n-
input and gate consists of 8(n − 1) transistors [2(n − 1) fusion gates], whereas
4(n + 1) transistors will be used in an n-input or gate. Therefore, in the case of
and logic, the number of transistors in classical circuits is smaller than that of
fusion-gate circuits. However, in the case of or circuits, the number of transistors
in fusion-gate circuits is smaller than that of classical circuits, and the difference
will be significantly expanded as n increases.

Classical and fusion-gate implementations of majority logic circuits with mul-
tiple inputs are shown in Fig. 5. Again, in classical circuits, the number of tran-
sistors on each unit’s current path is fixed to three. Five-input majority gates are
illustrated in the figure. For n-bit inputs (n must be an odd number larger than
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Fig. 8. Fusion-gate array of fusion gates on 2D rectangular grid where xi and yi rep-
resent the horizontal and vertical inputs and Xi and Yi the horizontal and vertical
outputs.

3), the number of transistors in the classical circuit was 30 + 36(n − 3)2, while
in the fusion-gate circuit, it was 2n(n + 1), which indicates that the fusion-gate
circuit has a significantly smaller number of transistors.

Half and full adders constructed by classical and fusion-gate logic are illus-
trated in Fig. 6. There were 22 transistors in a classical half adder [Fig. 6(a)],
whereas they were was 32 in a fusion-gate half adder [Fig. 6(b)]. For n-bit full
adders (n ≥ 1), there were 50n− 28 transistors in a classical circuit [Fig. 6(c)],
whereas there were 44n−28 in a fusion-gate circuit [Fig. 6(d)]. Again, the fusion-
gate circuit has a little advantage in the number of transistors, but the difference
will increase as n increases.

The comparison of the number of transistors between classical and fusion-
gate logic is summarized in Fig. 7. Except for an and logic (n ≥ 4), the number
of transistors in fusion-gate logic is always smaller than that of transistors in
classical logic circuits, especially in majority logic gates.
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The computational ability of the proposed methodology can be evaluated by
calculating logical functions of a 2D array of fusion gates at each output node.
The 2D computing matrix, where xi and yi represent the horizontal and vertical
inputs and Xi and Yi the horizontal and vertical outputs, is shown in Fig. 8.
For simplicity, here we assume yi = logical ‘1’. Then, the horizontal and vertical
outputs are represented by the following difference equations:

Yi,1 =
i∑

k=1

Xk, (i ≥ 1) (1)

Yi,j =
i−(j−1)∑

k=1

Yi,j−1, (i ≥ j) (2)

Xi,1 = Xi

i−1∑

k=1

Xk, (i ≥ 2) (3)

Xi,j = Xi

i−j∑

k=1

Xi,j−1, (i ≥ j). (4)

An example of implementation and simulations of three-input majority logic
gates is shown in Fig. 9. Seven fusion gates, i.e., 28 transistors for high-frequency
operation, are required for this function, whereas in conventional architecture,
30 transistors are necessary for the same function. Using the fusion-gate circuit
shown in Fig. 3(b), we simulated the majority logic circuit by using SPICE with
0.35-µm digital CMOS parameters (MOSIS, Vendor TSMC, with minimum-sized
transistors). The results obtained where A, B, and C represent the input, while
Y represents the output are shown in Fig. 9 (right). The clock frequency was
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100 MHz. The rise time of the output was 0.3 ns for this parameter set. The
operation speed is thus significantly faster than that of the two-transistor circuit.

Let us consider the number of transistors per function shown in Figs. 2(c)-
(e). A two-transistor fusion gate [Fig. 3(a)] is used for the time being. In the
case of not, two transistors are necessary; that is the same number of transis-
tors as that of a conventional inverter circuit. For and and nor functions, four
transistors are required, which is half the number of transistors in a combina-
tional circuit of conventional and and nor circuits. In the case of and and or,
six transistors are required, whereas ten are required in conventional circuits.
Therefore, for low clock-frequency applications, fusion-gate logical computing
with two-transistor fusion gates certainly decreases the number of transistors
in the circuit network. For high-speed applications, four-transistor fusion gates
have to be used; however, the number of transistors is doubled in this case.

What are the merits of fusion-gate architecture for high-speed applications?
There are two types of answers: introducing yet another device and completely
new functions. In the former case, a single-electron reaction-diffusion device [4]
is a possible candidate. For the latter case, let us consider ‘reconfigurable’ func-
tions. A basic idea of the reconfigurable logic architecture using fusion gates is
shown in Fig. 10. Each fusion gate is regularly arranged on a 2D chip surface and
is locally connected to other fusion gates via transfer gates. In this construction
a new unit gate consists of four transfer gates, a single fusion gate circuit, and
a four-bit memory circuit in which two bits give static inputs to the gate, and
the remainder is for selecting the signal flow. As an example, a not function is
depicted in the figure.

Arbitrary combinational circuits for arithmetic modules can be constructed
by the proposed fusion-gate circuits, but how about sequential circuits for prac-
tical computation? In other words, how can we implement static memory, e.g.,
flip-flop, circuits? A possible answer to this question is shown in Fig. 11. Re-
member that the fusion gate circuit shown in Fig. 3(b) consists of two inverters.
Therefore, by rewiring the fusion gate circuit, one can construct a D-type flip-
flop (D-FF) circuit, as shown in Fig. 11. Although four additional transfer-gates
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are required, D-FF circuits can be constructed while maintaining the basic con-
struction of a 2D array of fusion gate circuits.

4 Summary

We described a method of designing logic circuits with fusion gates which is
inspired by collision-based reaction-diffusion computing. First, we introduced a
new interpretation of collision-based computing, especially concerning a limited
direction of wave fragments and infinite transition speed. This simplified con-
struction of the computing media significantly. Second, we showed that basic
logical functions could be represented in terms of our unit operator that calcu-
lated both AB and AB for inputs A and B. Third, two basic MOS circuits were
introduced; one consisted of two transistors but operated very slowly, whereas
the other consisted of four transistors but operated much faster than the two-
transistor circuit. In the constructions of basic logic functions, the number of
transistors in the two-transistor circuit was smaller than that of the correspond-
ing conventional circuits. However, the number in the four-transistor circuit was
larger than them. The combination of the fusion gates produces multiple func-
tions, e.g., an and circuit can compute nor simultaneously, so we should build
optimization theories for generating multiple-input arbitrary functions. Finally,
we introduced a possible construction of D-type flip-flop circuits for constructing
sequential circuits.
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