
Noise-driven Neural Computing on VLSIs
Tetsuya Asai and Akira Utagawa

Graduate School of Information Science and Technology, Hokkaido University,
Kita 14, Nishi 9, Kita-Ku, Sapporo 060-0814, Japan.

Abstract— This paper provides an overview of the recent de-

velopment of our noise-driven VLSI circuits whose architectures

were inspired by biological nervous systems. Noises are in-

evitable under natural environment, however, one usually tries

to ‘attenuate’ noises and fluctuations on VLSIs by using, for ex-

ample, special shielding equipments, precise fabrication process,

special layout or circuit techniques, and so on. On the other

hand, biological systems certainly ‘exploit’ noises to increase per-

formances on neural computation. In this paper, some examples

of noise-driven neural computing on analog VLSIs are presented,

which may show what the noise-driven VLSI circuits can do now,

and what they may do in the future.

I. Introduction

Noise and fluctuations are usually considered as “obstacles”
in the operation of both analog and digital circuits, and most
strategies to deal with them are focused on the suppression.
This paper gives an overview of neural systems that employ
different strategies, i.e., neural strategies that can “exploit” the
properties of noise to improve the efficiency of operations. First,
an inhibitory neural circuit exhibiting noise shaping with sub-
threshold MOS neuron circuits is introduced. Although device
mismatches and external (temporal) noise are given, the cir-
cuits exploit the noise properties to perform noise-shaping 1-
bit AD conversion (pulse-density modulation). Second, noise-
induced synchronization among sub-RF CMOS analog oscilla-
tors for skew-free clock distribution is introduced. Indepen-
dent oscillators are implemented on a chip as distributed clock
sources, while the oscillators are synchronized by a common
temporal noise. Third, a high-fidelity pulse-density modulator
with noisy neuromorphic circuits based on a model of vestibulo-
ocular reflex is introduced. When several non-identical pulse-
density modulators are collected as noisy neurons, performances
on input-output fidelity of the population is significantly in-
creased as compared with that of a single neuron circuit. All
the three components above can be implemented by using stan-
dard CMOS processes. These strategies may be important in
the designs of emerging computer architectures consisting of
nanometer-scale (so noise-sensitive) devices.

II. An inhibitory neural network circuit exhibiting
noise shaping with subthreshold MOS circuits

Here we aim to develop a possible ultralow-power one-bit
analog-to-digital converter (ADC). A one-bit ADC converts
analog input signals to digital pulse streams where the analog
information is represented in the time domain. This operation
is referred to as pulse-density modulation (PDM). A similar op-
eration can be found in spiking neurons , e.g., integrate-and-fire
neurons (IFNs) [1]. The firing rate of the neuron increases as the
input magnitude incresases. Hence, the spike trains, e.g., the
density of spikes per second, represent analog values consisting
of 1-0 digital streams. Therefore a one-bit ADC could theoret-
ically be developed by implementing such a neuron circuit on
analog VLSIs. In practice, however, it is not easy to develop
an ADC with a neuron circuit due to the existence of quan-
tization, static and dynamic noises from the natural environ-
ment. The quantization noises can be eliminated by employing
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Fig. 1. (a) Subthreshold neuron circuit and (b) network circuit consisting

of three noisy neuron circuits and additional circuits (M1, M2 and

M3) acting as a global inhibitor

a sigma-delta modulator [2], but, eliminating the static noises
requires an additional calibration process after chip fabrication,
and eliminating dynamic noises requires a special isolation de-
vice.

In this section, we show a possible way to handle both static
and dynamic noises in analog integrated circuits by employing
neuromorphic architectures. To achieve this, we employ a pop-
ulation model of spiking neurons that exhibits noise shaping [3].
Through circuit simulations of the network circuit, we demon-
strate that the network can improve the system’s signal-to-noise
ratio (SNR) as a result of effectively using the static and dy-
namic noises.

A. Subthreshold CMOS circuits for implementing Mar’s in-
hibitory neural network

An inhibitory network model that exhibits noise shaping with
noisy elements was proposed by Mar et al. [3]. This network
consists of N IFNs whose membrane potential is reset to random
values after each firing, whereas the synaptic weights between
inputs and IFNs are randomly distributed.They demonstrated
that this noisy network model could improve the SNR as a result
of noise shaping as observed in conventional sigma-delta-type
ADCs [2].

We implemented Mar’s noisy IFN using a subthreshold
CMOS neuron circuit proposed by Asai et al. [4]. All the MOS
transistors in the circuit operate in their subthreshold region,
which ensures ultralow-power consumption as a whole. There-
fore, it is suitable for achieving our purpose.

Figure 1(a) shows a schematic of the neuron circuit where C1

and C2 represent capacitances, Vm,i the membrane potential of
the i-th neuron circuit, Ui the refractory potential, Ii the exter-



nal input current, Iout,i the quantized (spike) output current,
Iref the reference current for the quantization, Id,i the exter-
nal fluctuation (dynamic noise), and VI,i the inhibitory input.
When all the transistors are operating in their subthreshold re-
gion [5], the node equations of the circuit are given by

C1
dVm,i

dt
= Ii − I0 exp(κUi/Vt) + Id,i (1)

C2
dUi

dt
= I0 exp(κVI,i/Vt) − Iref + Id,i (2)

where I0 is the fabrication parameter, κ the effectiveness of
the gate potential, and Vt a temperature dependent term. The
maximum value of Iout is regulated by a current mirror (M3 and
M4) with reference current Iref .

A schematic of the network circuit is shown in Fig. 1(b).
Since Mar’s network model has uniform inhibitory connection
strengths, we can reduce the wiring complexity from O(N2)
to O(N) [6] by introducing a global inhibitor, which facilitates
the hardware implementation. The network circuit consists of
the noisy neuron circuits and additional MOS circuits (M1, M2
and M3) implementing the global inhibitor. We employ three
neurons (N = 3) to achieve small device sizes and minimum
power consumption. Current outputs of noisy neuron circuits
(Iout,i) are summed by M1. The summed current is mirrored
by a current mirror (M1 and M2) with a mirror ratio of 1:K.

Therefore, the output current (iout) is given by K
∑3

i=1
Iout,i.

Since M3 in Fig. 1(b) and M2 in Fig. 1(a) forms a current mirror,
membrane potentials (Vm,i for all i) are decreased when iout is
increased, which results in the global inhibition of all the neuron
circuits.

To embed the random synaptic weights (static noises) of
Mar’s neural network, we introduced nonuniform input current
Ii for each neuron. Instead of implementing random reset of the
membrane potential of Mar’s neural network, we introduced dy-
namic noises by random current pulses (Id,i), whose inter-spike-
intervals (ISIs) obey the Poisson distribution, for nodes Vm,i and
Ui. The oscillation phase of Mar’s network is increased by re-
setting the membrane potential, whereas that of the proposed
circuit is increased by the current pulses (Id,i). Therefore, ap-
plying random current pulses to nodes Vm,i and Ui is qualita-
tively the same as the random reset in Mar’s original network.

B. Simulation results

In the following circuit simulations, we assumed 1.5-µm
CMOS process (MOSIS, Vendor: AMIS). First, we simulated
the neuron circuit shown in Fig. 1(a) to examine the effect of
the random current pulses on the circuit as dynamic noises.
We assumed that MOS transistors have the same dimension of
W/L = 1.6µm/4µm, except for MOS transistors in current mir-
rors (W/L = 16µm/4µm). The external analog input current
(Ii) and the reference current (Iref) were set to 1 nA. The capac-
itances (C1 and C2) were set to 1 pF, and the inhibitory input
voltage (VI,i) was set to zero. The random current pulses Id,i

obeying the Poisson distribution (the mean and variation λ =
5000) were generated with an amplitude of 1 nA and the pulse
width of 10 µs. Figure 2 shows the time courses of membrane
potentials of noiseless (Id,i = 0) and noisy (Id,i ̸= 0) neurons. In
Fig. 2(a), we observed periodic oscillation of Vm,i, whereas non-
periodic oscillation was observed in Fig. 2(b) because the phase
was randomly increased by the random current pulses (Id,i).
Since the neuron circuit produces spike outputs (Iout,i) when
Vm,i is suddenly decreased, the operation shown in Fig. 2(b) is
equivalent to randomly resetting the membrane potential after
the neuron’s firing.
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Fig. 2. Time courses of Vm,i for with and without dynamic noise.
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Fig. 3. Auto correlation functions of output of network circuit when

inhibitory connection strength K = 1, 2, and 3.

Here, we describe how to determine the inhibitory connection
strength K. Since a network with large values of K inhibits
neurons severely, neurons with small inputs can not survive [3].
Therefore we have to choose an appropriate K for which all
neurons can survive. Through our circuit simulations, we found
that all neuron could survive when K ≤ 3. To determine the
best value of K, we evaluated the performance of the PDM cir-
cuit. As described above, the PDM circuit produces an output
spike density that depends only on the intensity of inputs in
the ideal case. In other words, the PDM circuit produces spikes
periodically when the inputs is constant. Therefore, we set K
so that the outputs of the circuit had high periodicity. Since the
auto correlation function (ACF) can quantify the periodicity of
the output, it is appropriate to determine the performance of
the circuit by calculating ACFs. Because the performance of
Mar’s model is increases in proportion to K [3], we expected
that the most appropriate value of K that is 3 or less would
be 3 in order to acquire the best performance. We calculated
ACFs of quantized iout [≡ V (t)] where iout was quantized to
0 (or 1) when iout was smaller (or larger) than 0.8 nA, for K
= 1, 2 and 3. Figure 3 shows the results for the ACFs with
α(τ) = 〈V (t′)V (t′ − τ)〉. As K increased, correlation peaks ap-
peared and apparent periodicity was observed when K = 3.
Therefore, we set K = 3 where all neurons survive and the
highest periodicity is observed.

Figure 4 compares the network circuit operations when K = 0
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Fig. 4. Comparison of network circuit operations when K = 0 (uncoupled

network) and K = 3 (coupled network).

(uncoupled) and K = 3 (coupled). When K = 0 [Fig. 4(a)],
iout exhibited nonperiodic oscillations. Noisy neuron circuits
fired incoherently. (See raster plots in the figure. Symbols +,
× and ∗ represent the firing events of the first, second and the
third neuron circuits, respectively.) The resulting ISIs of output
spike trains were random. On the other hand, when K = 3, iout

exhibited almost periodic oscillations [Fig. 4(b)]. The raster
plots in the figure show significant differences between firing
frequencies of three noisy neuron circuits as compared to the
raster plots in Fig. 4(a). The resulting ISIs of output spike
trains were almost uniform, as expected.

Figure 5 shows ISI histograms of the uncoupled (K = 0) and
coupled (K = 3) network circuits where 1500 firing events were
gathered with ∆ = 0.01 ms. When K = 0, we observed a
Poisson-type distribution of ISIs (solid line in Fig. 5) because
each neuron circuit was driven by independent noise sources
and thus fired incoherently. When K = 3, a Gaussian-type dis-
tribution was observed (dashed line in Fig. 5). Once a neuron
circuit receiving the maximum external input fires, the network
is globally inhibited. After this firing, the neuron circuit oper-
ates in its refractory state. Therefore, ISIs of this neuron are
higher than in the uncoupled case. Also, the neuron circuit can-
not fire when the other neuron circuit receiving a smaller input
than the maximum input, fires. Therefore, ISIs of output spike
trains follow ISIs of a neuron receiving the maximum input, and
the ISIs are averaged over the firing events of all neurons.

Figure 6 shows the PSD of the coupled (K = 3) and un-
coupled (K = 0) networks with sinusoidal inputs (Ii = I0 +
A sin(2πft), I0 = 1 nA, A = 50 pA, f = 100 Hz) where 16
trials were averaged with a square window function. The mea-
sured SNR of the uncoupled network was 10.2 dB, while that
of the coupled one was 18.1 dB, which indicated that the noise
level of the coupled network was less than one tenth of that of
the uncoupled network below the cutoff frequency (< 103 Hz).
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The external random current pulse obeying Poisson distribu-
tion is theoretically anti-correlated noise. The change in ISI
distributions from the Poisson type to Gaussian type in Fig. 5
implies that the amount of noises was decreased by the effect of
the global inhibition. As observed in raster plots in Fig. 4(b),
individual neurons fired irregularly and thus seemed not to con-
tribute to the signal transmission between the analog input and
the digital (spike) output. Moreover, since the firing order of
the neurons was also random, they seemed to fire incoherently.
However, the resulting output, the sum of firing events of neu-
rons shown at the bottom of Fig. 4(b), was almost periodic.
This mechanism appeared in the resulting PSD (Fig. 6) as noise
suppression, which implies that the coupled network is immune
to both static and dynamic noises unlike the uncoupled net-
work, which critically depends on the noise characteristics of
individual neurons.

III. On-chip CMOS clock generators exhibiting
noise-induced synchronous oscillation

Synchronous sequential circuits with global clock-distribution
systems are the mainstream of implementation in present dig-
ital VLSI systems where the clock distribution is the core of
synchronous digital operations. Practical clocks given through
external pads are distributed to sequential circuits being syn-
chronous to the same clocks via distributed clock networks. Sys-
tem clocks for synchronous digital circuits must arrive at all the
registers simultaneously. In practice, time mismatches of clock
arrival which are called ‘clock skew’ occur in LSIs [8]. The major
reasons for these mismatches derive from the system clock dis-



tribution (wiring defects or asymmetric clock paths), the prop-
agation delay of the clock chip, and the clock traces on the
board. The propagation delay is dependent on the fabrication
process, voltage, temperature, and loading, which makes the
clock skew even more complicated. Small clock skews prevent us
from increasing the clock frequency, and large skews may result
in severe malfunctions. Indeed clock-skew effects on the circuit
performance rise as the integration density (∼miniaturization)
or the clock frequency increases.

To resolve these clock-skew issues, various technologies on
clock distribution are widely used in present digital systems
such as zero-skew clock distribution [9], inserting buffers for
skew compensation [10] and controlling the clock-wire length
[11]. In regular circuit structures, clock skews are effectively
reduced by designing clock paths based on H trees (see [12] for
details including statistical analysis). For large-scale complex
clock networks, optimizing buffers in the clock distribution tree
usually reduces clock skew. One possible way to cancel clock
skew is to use asynchronous digital circuits where only local
clocks are used instead of global system clocks [13]. However,
the functions of these circuits currently cannot satisfy various
sophisticated demands. Moreover, major LSI designers have
recently started using advanced genetic algorithms in their post-
manufacturing processes to calculate the required margin [14].

The present solutions for the skew problems may increase
both the total length of clock distribution wires and the power
consumption, as well as optimization and post-processing costs.
In this paper, we propose another solution for the skew prob-
lems. Nakao et al. recently reported that independent neural
oscillators can be synchronized by applying appropriate noises
to the oscillators [7]. We here regard neural oscillators as inde-
pendent clock sources on LSIs; i.e., clock sources are distributed
on LSIs, and they are forced to synchronize with the addition
of artificial (or natural if possible) noises. In the following sec-
tions, we show a modified neuron-based model that are suit-
able for hardware implementation, neuron-based clock genera-
tors for sub-RF operations (< 1 GHz), and circuit simulation
results representing synchronous (or asynchronous) oscillations
with (or without) external noises.

A. The Model

In the original model [7], the FitzHugh-Nagumo neuron was
used to demonstrate the noise-induced synchronization between
the time courses of N trials under different initial conditions.
Instead we use N Wilson-Cowan oscillators in our model that
are suitable for analog CMOS implementation. The dynamics
are given by

dui

dt
= −ui + fβ(ui − vi), (3)

dvi

dt
= −vi + fβ(ui − θ) + I(t), (4)

where ui and vi represent the system variables of the i-th oscilla-
tor, θ the threshold, I(t) the common temporal random impulse
and fβ(·) the sigmoid function with slope β.

Figure 7 shows numerical simulation results of a single
Wilson-Cowan oscillator receiving temporal random impulses

given by I(t) = α
∑

j
δ(t − t

(1)
j ) − δ(t − t

(2)
j ) where δ(t) =

Θ(t) − Θ(t − w) (Θ, w and tj represent the step function, the

pulse width and the positive random number with t
(1)
j ̸= t

(2)
j

for all js, respectively). The system parameters were θ = 0.5,
β = 10, α = 0.1, w = 1, and the averaged inter-spike interval of
|I(t)| was set at 100. We observed the limit-cycle oscillations,

 0

 0.5

 1

 0  0.5  1

v

u

u nullcline
v nullcline
trajectory

Fig. 7. Nullclines and trajectories of single Wilson-Cowan type oscillator

receiving random impulses.

 0

 0.5

 1

 160  170  180  190  200

u

time

 0

 0.5

 1

 160  170  180  190  200

v

time

Fig. 8. Time courses of system variables of single Wilson-Cowan type

oscillator receiving random impulses.

and confirmed that the trajectory was certainly fluctuated by
I(t). The time courses of u and v are shown in Fig. 8.

We conducted numerical simulations using 10 oscillators
(N = 10). All the oscillators have the same parameters, and ac-
cept (or do not accept) the common random impulse I(t). The
initial condition of each oscillator was randomly chosen. Figure
9 shows the raster plots of 10 oscillators (vertical bars were plot-
ted at which ui > 0.5 and dui/dt > 0). When the oscillators
did not accept I(t) (α = 0), they exhibited independent oscil-
lations as shown in Fig. 9(a); however, all the oscillators were
synchronized when α = 0.1 as shown in Fig. 9(b). To evaluate
the degree of the synchronization, we use the following order
parameter:

R(t) =
1

N

∣∣∣∣∣∑
j

exp(iθj)

∣∣∣∣∣,
where N represents the number of oscillators, i the imaginary
unit and θj = tan−1[(vj − v∗)/(uj − u∗)] ((u∗, v∗) represents
the fixed point of the oscillator). When all the oscillator are
synchronized, R(t) equals 1 because of the uniform θjs, while
R(t) is less than 1 if the oscillators are not synchronized. Fig-
ure 10 shows the time courses of the order parameter values.
When α = 0, R(t) was unstable and was always less than 1
[Fig. 10(a)], whereas R(t) remained at 1 after it became stable
at t ≈ 2000 when α = 0.1 [Fig. 10(b)]. These results indicate
that if we implemented these oscillators as clock generators on
CMOS LSIs, applying common random pulses to the oscillators
could synchronize them.
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B. The circuit and simulation results

We designed a Wilson-Cowan oscillator circuit for sub-RF
operations (Fig. 11). The circuit consists of a differential pair
(M1 to M3) and a buffer circuit composed of two standard in-
verters. In the following simulations, we used TSMC’s 0.25-µm
CMOS parameters with W/L = 0.36 µm / 0.24 µm except for
M3’s channel length (L = 2.4 µm). Pseudo-random sequences
(Vmseq) were generated using a 4-bit M-sequence circuit, and
were distributed to the circuit through a RC filter. The supply
voltage was fixed at 2.5 V.

Figure 12 shows SPICE results of the nullclines and tra-
jectories receiving random impulses (C = 10 fF, R = 100
kΩ, the clock frequency of the M-sequence circuit was 50
MHz, which resulted in a 300-ns pseudo-random sequence).
Time courses of u and v are shown in Fig. 13. We observed
qualitatively-equivalent nullclines and trajectories to those of
the Wilcon-Cowan oscillators. We confirmed the limit-cycle
oscillations where the trajectory was effectively fluctuated by
the M-sequence circuit with the RC filter. The oscillation fre-
quency was about 1 GHz when the reference voltage Vref was
set at 1 V. Figure 14 shows the raster plots of 10 oscillator
circuits (vertical bars were plotted at which vi > 1.25 V and
dvi/dt > 0). All the circuits exhibited independent oscillations
when random sequence Vmseq was not given to them [Fig. 14(a)],
whereas they exhibited complete synchronization when Vmseq

was given [Fig. 14(b)]. Time courses of the order parameter
values were shown in Fig. 15. When random impulse was not
given to the circuit, R(t) was not stable and was always less than
1 [Fig. 15(a)], while R(t) remained at 1 after it became stable

CRVmseq

u v

Vref M3

M1 M2

buffer circuit

differential pair

M
-sequence

circuit

Fig. 11. Wilson-Cowan circuit for sub-RF operations.
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at t ≈ 700 µs when random impulse was given [Fig. 15(b)].

Our results indicate that if we distributed these circuits as
ubiquitous clock sources on CMOS LSIs, they could be synchro-
nized when common random impulses were given to the circuits.
Although this may cancel out the present clock skew problems,
device mismatches between the clock sources may prevent the
sources from complete synchronization. Therefore, we investi-
gated the device-mismatch dependence of the proposed circuits.
For our distributing purposes, local mismatches in a single oscil-
lator circuit would be negligible; i.e., mismatches in a differential
pair (M1 and M2) and a current mirror. Mismatches in inverters
corresponding to threshold θ in Wilson-Cowan model would also
be negligible because they only shift the fixed point, and do not
vastly change the oscillation frequency. However, mismatches
of M3 between the oscillators may drastically change each oscil-
lator’s intrinsic frequency. Therefore, we distributed threshold
voltages of M3s of all the oscillators. Zero-bias threshold volt-
ages (VTO) of M3s were randomly chosen from the Gaussian
distribution (mean: 0.37 V and standard deviation: σ). Figure
16 shows the dependence of averaged order-parameter values
〈R(t)〉 (from 0 to 1 µs) on σ. We generated 10 random VTO
sets for each σ, and plotted the error bars and the mean values
in the figure. We confirmed that 〈R(t)〉 was gradually decreased
when σ was increased.

IV. High-fidelity pulse-density modulation with noisy
neuromorphic circuits based on a model of

vestibulo-ocular reflex

Here we explore possible ways to construct an electrical cir-
cuit that can perform high-speed information processing with
slow devices. Regarding this point, neural networks seem to
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be a possible choice because they are considered to perform
high-speed parallel information processing with neuron elements
which are relatively slower than CMOS transistors. In recent
study, Hospedales et al. reported that a neural network with
temporal noises and spatial noises in neurons that was used
to perform “vestibulo-ocular reflex” (VOR) could conduct a
temporal signal whose frequency was higher than operation fre-
quency of a single neuron in networks [15]. VOR stabilizes the
visual field by moving the eyeballs in such a way that compen-
sates for rotations of the head. They reported that this function
could be achieved by using temporal and spatial noises of neu-
rons. Figure 17 shows a simple schematic of the model. The four
neurons (N = 4) represented by the open circles are connected
in parallel. All the neurons accept common input and generate
spike output i (i: neuron number). The output of the network is
given by summing of outputs of all the neurons. When no noises
are applied to this network, all the neurons generate spike out-
put at the same time (phase). However, when they are affected
by temporal noises ξi and spatial noises δi, they no longer can
generate spike output at the same time. It represents that the
network shows asynchronous firing and it can thus respond to
relatively faster input signal than a single neuron.

The operation frequency in electrical circuits of a single de-
vice is limited by several conditions that derive from physical
limitations. Electrical circuits are often limited by power con-
sumption or chip area size especially in mobile appliances or
sensor appliances. Information processing done by the brain
is considered to have an energy-efficient structure. The archi-
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tecture observed in the brain may provide possible solutions to
electrical engineering. Further more, electrical-circuit engineers
often try to reduce or eliminate the effects of noises and device
mismatches of transistors because these effects degrade circuit
characteristics and they even cause erroneous circuit operation.
Typical circuit designs to reduce these effects often require ad-
ditional transistors and larger transistors ( = larger chips and
greater power consumption), which makes it more difficult to
meet the specification. Here, by implementing Hospedales et
al.’s model in electrical circuits, noises and device mismatches
in these circuits could be utilized to improve operations while
group of slow devices could achieve faster operation. We con-
structed a simple neural-network circuit to confirm the improve-
ments in fidelity and we then demonstrate that the operation
frequency of a noisy network circuit is higher than that of a
noiseless network circuit.

A. CMOS pulse-density modulator implementing neural net-
work model of VOR

Based on the results obtained by Hospedales et al. [15], we
developed a network circuit consisting of multiple MOS neuron
circuits. Figure 18 shows a schematic of an i-th neuron cir-
cuit based on the Wilson-Cowan oscillator model [16]. The ui

and vi represent system variables of the i-th oscillator, Vb the
bias voltage, C1 and C2,i the capacitance, and the Vmseq,i the
pseudo noise voltage generated by a 4-bit M-sequence circuit.
The Vmseq,i fluctuates the trajectories occurred in the circuit
so that phase advance or delay of the oscillator occurs. The
oscillator circuit accepts pulsed input voltage Vin and generates
a spike event (vi) when Vin increases. After a spike is gener-
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ated, the circuit can hardly generates s spike even if an input
signal is applied for a certain period. This period is called the
“refractory period” in biology. After this period, it can gener-
ate spike events. This means that when the input frequency is
higher than a certain threshold, the circuit can not correctly
responds to the input. The length of the refractory period
is mainly determined by a capacitance C2,i. Figure 19 has a
schematic of a network circuit. Four neuron circuits were used
for our preliminary research (N = 4). The spatial noises in
the model can be mimicked by setting C2,i to different values.
Consequently, each neuron circuit has a slightly different refrac-
tory period and has a slightly different limitations in intrinsic
frequency. These neurons accept identical (correlated) pulsed
signal Vin and uncorrelated pulsed signal Vmseq,i. Because the
noises signal Vmseq,i drastically change phases by applying fluc-
tuations to vi, no firing events by neurons occur with the same
timing although common input is applied to all the neurons.
This means that the probability of the network firing remains
high when noises are applied. The entire output is expressed by
the logical summing of all neurons’ output events with the OR
logic circuit.

B. Simulation results

Figure 20 shows the nullclines and trajectories for a noiseless
(Vmseq,i = 0 V) single (N = 1) neuron circuit. In simulations of
the simgle neuron circuit, C1 was 100 fF, C2,1 was 300 fF, Vdd

was 2.5 V, and the clock frequency of the M-sequence circuit was
set to 0.5 kHz.Vb was set to 0.12 V so that the neuron circuit
would stay stable if input signal Vin did not contain a temporal
signal. We confirmed the excitatory operation after pulse input
was applied as shown in Fig. 20. Figure 21 shows simulated
responses of a noiseless oscillator (Vmseq = 0) to variable input-
pulse frequencies (fin). When fin was 0.4 kHz [Fig. 21 (a)], the
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neuron could conduct input pulses and generates spike output
in response to the rise time of input pulses. However, when
fin was 0.5 kHz [Fig. 21 (b)], the neuron could not conduct
these input pulses and the neuron generated spike events once
every two input pulses. We confirmed that the single neuron
circuit could responds to temporal signals whose frequencies is
lower than 0.4–0.5 kHz. To visualize the relationship between
pulse input frequency fin and the spike output frequency fout,
we plotted the dependence of fout on fin in Fig. 22. The open
squares represent the simulation results and the solid line is an
approximated curve for these data. As seen from the figure, the
circuit could conduct input whose frequencies were 0–0.4 kHz
while it could not conduct input whose frequencies were over
0.4 kHz. This limitation depended on capacitance C2,i.

We will now discuss what the effect noises had in our network
circuit. We conducted simulation with and without noises. No
noises meant that none of the four neuron circuits accepted tem-
poral noises given by Vmseq,i and each capacitance C2,i had the
same value (300 fF). Applying noises meant that all the neuron
circuits accepted individual temporal noises (Vmseq,i) and the
value of C2,1, C2,2, C2,3, and C2,4 were set to correspond to 280,
290, 300, and 310 fF. Raster plots and output of the network
circuit in Fig. 23 indicate the performance of the circuit without
noises [Fig. 23 (b)] and with noises [Fig. 23 (c)]. We set fin to
1.2 kHz which is faster than operation frequency of a single neu-
ron circuit (0.4 kHz). Figure 23 (a) shows the input signal. The
symbols +,×, ∗, and 2 in Fig. 23 correspond to firing events
for neurons 1, 2, 3, and 4, and the vertical line represents the
firing events of the whole network circuit. When no noises were
applied, the four circuits had exactly the same characteristics;
thus all their outputs is identical as shown in Fig. 23. This
meant that the output of the four neurons had the same value
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as the output of a single neuron. This also meant that even if
more neurons were employed the performance of the network
circuit would not be improved. When noises were applied to
neurons, their individual response to common input was differ-
ent due to noises because they dynamically changed the state
of each neuron. The outputs of a single neuron are not periodic
and seem to be random. However, output could express an in-
put signal. The output of a network circuit with noises has an
irregular signal that is caused by noises.

We showed that a noisy circuit surpasses a noiseless circuit in
its response to an input signal. Dependence of fout on fin plot-
ted in Fig. 24 demonstrate the performance. The open squares
plot results for the circuit without noises and the filled circles
show results for the circuit with noises in Fig. 24. The solid
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black line represents where fin = fout. The noiseless circuit
had the same characteristics as shown in Fig. 22. This circuit
could respond to 0.4 kHz, which is the upper limit frequency of
a single neuron circuit, and it could not respond to frequencies
that were higher than the limit frequency of a single neuron.
When noises were applied to the circuit, the same characteris-
tics were qualitatively confirmed with the model. When fin was
low fout was higher and almost same value (0.5 kHz). When
fout was high fout was linear to fin. It was difficult to achieve
these characteristics without noises. Applying random initial
conditions may achieve the same characteristics in the noise-
less circuit because random initial conditions give phase delay
and firing events occur randomly for each neuron. However,
even if random initial conditions were applied their phases were
synchronized by a common input signal whose frequency and
amplitude do not have a fixed value.

V. Summary

First, we demonstrated a possible way to develop a one-bit
analog-to-digital converter in a noisy environment. We pro-
posed a network circuit inspired by neuromorphic architectures
to subtly utilize static and dynamic noises in VLSIs. We em-
ployed a population model of spiking neurons [3]. This model
has a network using inhibitory coupling that exhibits noise shap-
ing. We implemented this model with subthreshold MOS cir-
cuits to actively employ noise. The static and dynamic noise ap-
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plied to the circuit for noise shaping were obtained from device
mismatches of current sources and externally applied random
(Poisson) spikes, respectively. A coupled network produced a
Gaussian-like distribution of inter-spike intervals (ISIs), while
an uncoupled one had a broad distribution of ISIs. Through
circuit simulations we confirmed that the signal-to-noise ratio
of a coupled network was improved by 7.9 dB compared with
that of an uncoupled one as a result of noise shaping.

Second, we showed CMOS sub-RF oscillators that could be
synchronized using common random impulses, based on a the-
ory in [7]. We proposed a modified Wilson-Cowan model for
implementing FitzHugh-Nagmo oscillators. We confirmed that
the synchronization properties of the modified model were qual-
itatively equivalent to those of the original model. We then de-
signed sub-RF oscillator circuits based on the modified model.
Through circuit simulations, we demonstrated that the circuits
exhibited the same synchronization properties as in the original
and modified models. For our clock-distributing purposes, we
investigated the synchrony dependence on device mismatches
between the distributed oscillator circuits. The result showed
that the synchrony was gradually decreased when variance of
the mismatch was linearly increased, which indicated that our
‘ubiquitous’ clock sources with small device mismatches would
be synchronized by optimizing our parameter sets.

Finally, we introduced a neuromorphic circuit with high fi-
delity in its output spike train based on the Vestibulo-Ocular
Reflex (VOR) model. We constructed a network circuit con-
sisting of neuron circuits, an M-sequence circuit, and an OR
logic circuit. We confirmed that a single neuron circuit could
operate up to 0.4 kHz and it operated incorrectly over 0.4 kHz.
When four neurons were used in simulations, the network with-
out noises had the same characteristics while the network with
noises had higher performance than that without noises. The
noisy network could operate correctly at 1.2 kHz and we con-
firmed that fidelity could be increased by noises. We were forced
to limit the operation frequency of the neuron circuit that we
introduced in this report forced to a certain value due to the
size of capacitance in the circuit. We plan to use a subthresh-
old CMOS circuit that allows an ultra-low power circuit even
though device mismatches strongly degrades circuit character-
istics.

We have recently extended our noise-driven CMOS circuits to
“single-electron circuits” that are much more sensitive to both
external and internal (thermal) noises, e.g., single-electron neu-
ral network for synchrony detection [17], stochastic resonance
in single-electron circuits [18], [19], single-electron circuits per-
forming dendritic pattern formation with nature-inspired cel-

lular automata [20], single-electron image processing architec-
tures for edge detection [21] and motion detection [22], a noise-
shaping single-electron pulse-density modulator [23], and so on.

Acknowledgement

This work was partially supported by the MEXT, Grant-in-
Aid for Scientific Research on Innovative Areas “Emergence in
Chemistry” (20111004).

References

[1] M, Hovin, D. Wisland, Y. Berg, J. T. Marienborg, and T. S. Lande, “Delta-

sigma modulation in single neurons,” in Proc. of 2002 IEEE International

Symposium on Circuits and Systems, vol. 5, 617-620, 2002.

[2] S. R. Norsworthy, R. Schreier, and G. C. Temes, ed., Delta-Sigma Data

Converters, IEEE Press, Piscataway, NJ, 1997.

[3] D. J. Mar, C. C. Chow, W. Gerstner, R. W. Adams, and J. J. Collins,

“Noise shaping in populations of coupled model neurons,” Neurobiology, 96,

pp. 10450-10455, 1999.

[4] T. Asai, Y. Kanazawa, and Y. Amemiya, “A subthreshold MOS neuron

circuit based on the Volterra system,” IEEE Trans. Neural Networks, vol.

14, no. 5, pp. 1308-1312, 2003.

[5] E .A. Vittoz, “Micropower techniques,” in Design of MOS VLSI Circuits

for Telecommunications, Y. Tsividis and P.Antognetti, Ed. Prentice-Hall,

NJ:Englewood Cliffs, 1985, pp. 104-144.

[6] T. Asai, M. Ohtani, and H. Yonezu, “Analog integrated circuits for the

Lotka-Volterra competitive neural networks,” IEEE Trans. Neural Networks,

vol. 10, no. 5, pp. 1222-1231, 1999.

[7] H. Nakao, K. Arai, and K. Nagai, “Synchrony of limit-cycle oscillators in-

duced by random external impulses,” Phys. Rev. E vol. 72, 026220, 2005.

[8] D. E. Brueske and S. H. K. Embabi, “A dynamic clock synchronization tech-

nique for large systems,” IEEE Trans. Comp., Packag., Manufact. Technol.

B, vol. 17, pp. 350-361, 1994.

[9] R. S. Tsay, “An exact zero-skew clock routing algorithm,” IEEE Trans. on

Comp.-Aided Design of Integrated Cir. Syst., vol. 12, no. 2, pp. 242-249, 1993.

[10] R. B. Watson, Jr., and R. B. Iknaian, “Clock buffer chip with multiple

target automatic skew compensation,” IEEE J. Solid-State Circuits, vol. 30,

pp. 1267-1276, 1995.

[11] T. -H. Chao, Y. -C. Hsu, J. -M. Ho, and A. B. Kahng, “Zero skew clock

routing with minimum wirelength,” IEEE Trans. Circuits and Systems II,

vol. 39, no. 11, pp. 799-814, 1992.

[12] M. Hashimoto, T. Yamamoto, and H. Onodera, “Statistical analysis of

clock skew variation in H-tree structure,” IEICE Trans. on Fundamentals of

Electronics, Communications and Computer Sciences, vol. E88-A, no. 12, pp.

3375-3381, 2005.

[13] C. J. Myers, Asynchronous Circuit Design, Wiley-Interscience, 2001.

[14] E. Takahashi, Y. Kasai, M. Murakawa and T. Higuchi, “Post-fabrication

clock-timing adjustment using genetic algorithms,” IEEE J. Solid-State Cir-

cuits, vol. 39, no. 4, pp. 643-649, 2004.

[15] T. M. Hospedales, M. C. W. van Rossum, B. P. Graham, and M. B. Dutia,

“Implications of noise and neural heterogeneity for vestibulo-ocular reflex

fidelity”, Neural Computing, 20, 3, 756–778, 2008.

[16] T. Asai, Y. Kanazawa, T. Hirose, and Y. Amemiya, “Analog reaction-

diffusion chip imitating the Belousov-Zhabotinsky reaction with Hardware

Oregonator Model,” International Journal of Unconventional Computing, 1,

2, 123–147, 2005.

[17] Oya T., Asai T., Kagaya R., Hirose T., and Amemiya Y., “Neuronal syn-

chrony detection on signle-electron neural network,” Chaos, Solitons and

Fractals, vol. 27, no. 4, pp. 887–894 (2006).

[18] Oya T., Asai T., and Amemiya Y., “Stochastic resonance in an ensemble

of single-electron neuromorphic devices and its application to competitive

neural networks,” Chaos, Solitons and Fractals, vol. 32, no. 2, pp. 855–861

(2007).

[19] Kasai S. and Asai T., “Stochastic resonance in Schottky wrap gate-

controlled GaAs nanowire field effect transistors and their networks,” Ap-

plied Physics Express, Vol. 1, 083001 (2008).

[20] Oya T., Motoike I.N., and Asai T., “Single-electron circuits performing

dendritic pattern formation with nature-inspired cellular automata,” Inter-

national Journal of Bifurcation and Chaos, vol. 17, no. 10, pp. 3651–3655

(2007).

[21] Kikombo A.K., Schmid A., Asai T., Leblebici Y., and Amemiya Y., “A bio-

inspired image processor for edge detection with single-erectron circuits,”

Journal of Signal Processing, vol. 13, no. 2, (2009), in press.

[22] Kikombo A.K., Asai T., and Amemiya Y., “An elementary neuro-morphic

circuit for visual motion detection with single-electron devices based on

correlation neural networks,” Journal of Computational and Theoretical

Nanoscience, vol. 6, no. 1, pp. 89–95 (2009).

[23] Kikombo A.K, Asai T., Oya T., Schmid A., Leblebici Y., and Amemiya

Y., “A neuromorphic single-electron circuit for noise-shaping pulse-density

modulation,” International Journal of Nanotechnology and Molecular Compu-

tation, vol. 1, no. 2, pp. 80–92 (2009).


