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Analog Computation Using Quantum Structures
—— A Promising Computation Architecture
for Quantum Processors ——

SUMMARY Analog computation is a processing method
that solves problems utilizing an analogy of a physical system to
the problem. As it is based on actual physical effects and not on
symbolic operations, it is therefore a promising architecture for
quantum processors. This paper presents an idea for relating
quantum structures with analog computation. As an instance, a
method is proposed for solving an NP-complete (nondeterminis-
tic polynomial time complete) problem, the three-color-map
problem, by using a quantum-cell circuit. The computing
process is parallel and instantaneous, so making it possible to
obtain the solution in a short time regardless of the size of the
problem.
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1. Introduction

One of the goals in quantum electronics is to develop
computing systems that can solve given problems by
utilizing quantum effects, what I call “quantum proces-
sors.” To develop such systems, we must first find a
computation method or processing one that can be
implemented using quantum effects. The purpose of
this paper is to introduce a probable candidate for such
a processing method. It is analog computation. This
paper illustrates the concept of analog computation
with examples, then presents for future discussion an
idea for relating quantum structures with analog com-
putation. I hope that it will stimulate the readers’
thinking in this area.

2. What is Analog Computation

Analog computation is a processing method that solves
a mathematical problem by applying an analogy of a
physical system to the problem. To solve the problem
with this method, one prepares an appropriate physical
system and represents each problem variable by a
physical quantity in the system. If the mathematical
relations between the physical quantities are analogous
to those of the problem, then he can find the solution
to the problem by observing the behavior of the system
and measuring the corresponding physical quantities.
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A processing method based on this principle is called
analog computation.

The analog computation is quite different from
the commonly used binary-digital computation (Fig.
1). In the digital one, we first devise an algorithm (a
set of instructions for finding the solution to a prob-
lem), then execute each step of the algorithm in the
manner of a Boolean operation under Neumann-type
computing architecture. In contrast, an analog compu-
tation is concerned with no symbolic Boolean opera-
tion; instead it utilizes the properties of a physical
system to perform the mathematical operations
required for the solution. A unique and important
feature of analog computation is that it is based on
“live” physical matters and not on symbolic opera-
tions; therefore it is probable that quantum effects will
be utilized well for implementing analog-computation
systems.

In the following, I will describe for explanation
two known examples of an analog-computation sys-
tem. One is a differential analyzer that solves
differential equations by using integrators (Sect. 3)
and the other is a soap-film system for analyzing the
Steiner tree problem (Sect. 4). After that I will present
an instance of applying quantum effects to analog
computation (Sect. 5). It is the solution to the three-
color-map problem that uses quantum-cell circuits.

3. Analog-Computing System for
Differential Equations

Solving

As a first example of analog computation, I will illus-

Boolean
architecture  operation

Algorithmic  Neumann

@r processing

Non-algorithmic Non-Neumann Non-Boolean

Binary-digital
computation

+ Neural network * Celullar + Multivalued logic
- Holonic system automaton . Threshold logic

+ Analog computation + Majority-decision logic

Fig. 1 Various processing methods for problem solving. The
commonly used binary-digital computation is based on algorith-
ms, Neumann architecture, and Boolean operation. Analog
computation is based on an analogy of a physical system to the
problem.
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Fig.2 Basic elements for constructing a system analogous to
differential equations. (a) Integrator. (b) Summing amplifier.
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Fig.3 A physical system setup for the differential equation
d*yldx*+b d*y/dx*+c dyjdx+d y=0. The solution y is
obtained on node P.

trate the method for solving differential equations. For
example, consider the ordinary differential equation

d*yldx*+b d*y/dx*+ ¢ dy/dx+d y=0.

In digital computation, this differential equation is
first reduced to simultaneous first-order differential
equations, then solved by an application of the numeri-
cal techniques such as Runge-Kutta and multistep
methods.

The procedure for analog computation differs, as
follows. We first construct a physical system analogous
to the equation. Such a system requires two basic
elements (Fig. 2):

1. An integrator, which produces integration of a
physical variable with respect to another physical
variable;

2. A summing amplifier, which produces a weighted
sum of input variables.

The differential equation under investigation is im-
plemented by combining three integrators and a sum-
ming amplifier to construct a closed-loop system, as
illustrated in Fig. 3. We can find the solution to the
equation by observing the change of the physical
variable on node P. A computing system of this type
i3 called a differential analyzer.

For information, two types of integrators are illus-
trated in Fig.4. Both mechanical and electronic
differential analyzers were employed in engineering
until the 1950’s. They could not compete, however,
with digital computers because of their fundamental
limitation in accuracy and troublesome procedure for
system setup (parameter scaling and element connec-
tion); therefore they gradually faded into the back-
ground. But they can be expected to make a comeback,
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Fig.4 Two types of integrators. (a) Mechanical wheel-and-
disk integrator. The variables x and y are the rotation of shafts.
(b) Electronic integrator consisting of an operational amplifier
and a capacitor. The independent variable x is time, and the
dependent variable y is voliage.

provided that minute and high-speed integrators can be
created by use of quantum structures. If a quantum
LSI is developed that has a great many integrators on
a chip, it will provide an useful tool for quickly
solving partial differential equations and integral equa-
tions — a task that is difficult for the classical
differential analyzers.

4. Soap-Film System for Analyzing the Steiner
Tree Problem

Not all problems that can be solved by analog compu-
tation are differential equations. Let’s turn to another
field, the optimization problems.

As an example, consider the following problem
(Fig. 5). Connect n points on a plane, using a graph
of minimum overall length, with the use of additional
Jjunction points allowed. This is called the Steiner tree
problem. Plainly expressed, the problem is “to connect
n cities by a road network of minimum total length.”

This problem is intractable for digital computa-
tion. There are many possible graphs with junction
points, and we must examine all the possible ones to
find the minimum solution. The number of
computational steps required increases exponentially
with the number »n of original points. Indeed, the
Steiner tree problem belongs to the class of NP-hard
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Fig.5 The Steiner tree problem. Connect given points on a
plane with a graph of minimum overall length. This is difficult
to solve using existing computers because it requires enormous
computing time.

Glass plate

Soap film

Fig. 6 A soap-film solution to the Steiner tree problem. The
problem can be quickly solved by utilizing the equilibrium of a
soap-film system. (See Ref. [2].)

(nondeterministic polynomial time hard) problems.
Except for inefficient exponential-time procedures, no
algorithm is known for the solution. This problem
therefore requires enormous computing time to solve
and is virtually unsolvable for large values of n. (For
details of NP-complete and NP-hard problems, see Ref.
[1])

Nevertheless, there is an ingenious analog-
computation method that can quickly solve the prob-
lem [2]. We use soap films to make a physical system
analogous to the problem (Fig. 6). Prepare two paral-
lel glass plates and insert » pins between the plates to
represent the points; then dip the structure into a soap
solution and withdraw it. The soap film connects the
n pins in the minimum Steiner-tree graph. The
computing process is parallel and instantaneous, so we
can obtain the solution in very short time regardless of
the number 7 of the pins.

In this analog computation, the energy-
minimizing principle is well utilized for problem solv-
ing. Any physical system changes its confuguration to
decrease its total energy. In liquids at rest, the relevant
energy components are the gravitational potential
energy and the surface energy. The latter is dominant
in a thin soap film, and so a soap-film system changes
its configuration to minimize its total area (therefore
its length) and thereby its surface energy.

Strictly speaking, it is not possible to be certain, in
this system, that the absolute minimum solution can
always be obtained. Depending on the angle at which
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Fig.7 Quantum-cell circuits. (a) A unit cell consisting of five
quantum dots with two electrons. (b) Two polarization states
“1” and “0.” (b), (c) Two circuit components. The letter a
denotes the nearest-neighbor distance. (See Refs. [3] and [4].)

the system is withdrawn from the soap solution, the
soap-film network sometimes assumes topologies
different from the optimum one that gives the mini-
mum network length. Even in such cases, however, the
networks obtained are always nearly equal to the
minimum one. Hence it can be said that the system
works well in general.

5. Quantum-Cell Circuit for Solving the Three-
Color-Map Problem

It is interesting to speculate what analog computations
are possible in the quantum-electronics world. Setting
aside the issue of the feasibility of constructing actual
devices, I present here an instance of applying quantum
structures to analog computation. It is the solution to
three-color-map problems that utilizes the property of
quantum-cell circuits. In the following, I will describe
the concept of quantum-cell circuits and the three-
color-map problems, and then I will propose a
quantum-cell circuit system for solving the problems.

5.1 Quantum-Cell Circuit

The quantum-cell circuit is a logic system composed of
quantum cells, each of which consists of coupled
quantum dots. This concept was first introduced by
Lent and colleagues [3], [4]. They proposed a cell
structure that consists of five quantum dots located at
the corners and the center of a square (Fig. 7(a)). The
cell is occupied by two electrons that are tunneling
among the dots within the cell. (A fixed positive
charge is also assumed on each dot to maintain charge
neutrality in the cell.) Because of Coulomb repulsion,
the electrons tend to occupy the diagonal sites in the
cell. Therefore, the cell has two stable states of polari-
zation (Fig. 7(b)). By combining the unit cells, vari-
ous circuit components can be designed. As an exam-
ple, Fig. 7(c) illustrates a signal-transmission line con-
sisting of an array of such cells. The polarized state of
the input cell induces the same polarization in all the
cells in the line, so that a binary signal is transmitted
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on the line from one point to another. Figure 7(d)
illustrates an inverter circuit that produces, in the
output, polarity opposite to that of the input. (Other
logic circuits have also been designed: see References
for details.)

Quantum-cell circuits require several conditions
for operation. They work as desired at any time if both
of the following two conditions are satisfied:

(a) The interelectron repulsive force between
different cells acts only at the distance of the nearest
neighbor, denoted by the letter @ in the figure, and
does not extend further.

(b) The circuit system can be annealed into an
equilibrium state of global-minimum potential ener-
gy’

The cell circuits can be operated without these condi-
tions, but in that case careful consideration is required
as to the arrangement of cells (i.e., to the position of
each cell and the distance of cells). For simplicity, the
two conditions are assumed in the following.

5.2 Three-Color-Map Problem

Consider the following problem: Can the countries on
a given map be colored with three colors so that no
two countries that share a border have the same color
(Fig. 8) ? This is called the three-color-map problem
and is difficult to solve for a map of many countries.
There are colorable maps and uncolorable ones, but
we cannot tell whether a given map can be colored
before examining all the possible colorings. (The

(@) (b)

Fig. 8 Coloring of a given map with three colors. (a), (b)
Colorable maps. The numbers 0, 1, and 2 represent three colors.
(¢) An uncolorable map. The trial solution shown fails on
reaching region F.

A B C
F E D
Dual graph

Fig.9 The dual graph for the map in Fig. 8(a ). Each point is
colored in one of three colors. Two points connected by a line
cannot have the same color.
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problem is easy if we can use four colors, because it has
been proved that four colors suffice for any map.) The
three-color-map problem belongs to the class of NP-
complete, and is intractable for digital computation
because only exponential-time algorithms are known
for the solution.

This problem is reduced to one of graph coloring
(Fig. 9). Any map can be converted into a correspond-
ing dual graph by reducing each country to a point and
drawing a line between two points if the corresponding
countries share a border. Coloring the map is then
equivalent to coloring the graph, under the rule that
two points connected by a line cannot have the same
color.

5.3 Quantum-Cell Circuit System for the Problem
Solving

The following describes how to solve the three-color-
map problem by using the quantum-cell circuits. Qur
work is first to construct a quantum-cell circuit analo-
gous to a given map for the problem and then to
analyze the problem by using the cell circuit.

5.3.1 Defining Cell Structures

I now introduce two types of quantum cells for con-
structing the analog system: a three-dot and a two-dot
cell (Fig. 10). The former consists of three quantum
dots located at the vertices of an equilateral triangle,
and the latter of two quantum dots. Each cell is
occupied by an electron that is tunneling among the
dots within the cell.

5.3.2 Implementing the Dual Graph by Using the
Cells

Taking the map of Fig. 8§(a) as an example, we con-
struct the analogous cell circuit for problem solving.
The map can be converted into the dual graph of Fig.
9, reducing our task to constructing a cell circuit
analogous to the graph.

Quantum dot

@ Occupied
by an electron

O Empty
(a) (b)

Fig. 10 Quantum cells for the problem-solving system. (a) A
three-dot cell with an electron. (b) A two-dot cell with an

electron.

T The annealing of the quantum-cell circuits has been
conceived and studied by Akazawa and colleagues as an
indispensable procedure for operating the cell circuits.
Their work is under submission.
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Fig. 11 Construction of a quantum-cell circuit analogous to the
three-colorability problem. (a) A three-dot cell representing a
point on the graph. (b) A cell circuit analogous to the two
connected points A and B. The letter a denotes the nearest-
neighbor distance. (c) A cell circuit analogous to the subgraph,
consisting of the six points A-F and five lines.

We represent a point on the graph by a three-dot
cell (Fig.11(a)). The three dots, A1-A3, represent
three colors; e.g., Al represents red, A2 blue, and A3
green. The color of the point is equal to the color of
the dot that is occupied by an electron; e.g., the point
is colored green if an electron is on A3.

We first implement two points A and B connected
by a line. This is done by coupling two three-dot cells
as illustrated in Fig. 11(b). Interelectron repulsion
acts at the nearest-neighbor distance denoted by the
letter @ in the figure. Therefore two electrons in the
coupled two cells cannot occupy the dots that represent
the same color; e.g., if the electron in cell A is on dot
A1, then the electron in cell B is on a dot of differing
color, B2 or B3.

By putting six three-dot cells at regular intervals,
we obtain a cell circuit analogous to a subgraph consis-
ting of the six points with five lines (Fig. 11{(c)).
Electrons in neighboring cells (or coupled cells) can-
not occupy dots of the same color hence are on
dots of differing colors because interelectron
repulsion acts at the nearest-neighbor distance a.

5.3.3 Coupling the Three-Dot Cells to Complete the
Cell Circuit

To develop the subgraph circuit of Fig. 11(c) into the
complete dual-graph circuit, we must couple the cells
A and F, B and E, and C and E. This is done by
coupling the corresponding dots, using an array of the
two-dot cells. Figure 12 illustrates how to couple two
dots (Al, F1) in two three-dot cells (A, F). The
coupling array consists of two-dot cells that are lined
up at intervals of the nearest-neighbor distance a.
Because of interelectron repulsion, any two of the
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Fig. 12 Coupling two three-dot cells (A and F) with each
other, using an array of two-dot cells. A coupling structure for
dots Al and F1 is illustrated. The letter a denotes the nearest-
neighbor distance. Coupling for two other dot pairs, A2-F2 and
A3-F3, are also needed.

@ Occupied by an electron
O Empty

Fig. 13 The analog-computation system for solving the three-
color-map problem for the graph in Fig. 9 (or the map of Fig. 8
(a)). The letter a denotes the nearest-neighbor distance.

electrons cannot face each other at the nearest-
neighbor distance; therefore if the electron in the cell
A occupies dot Al, then the electron in the cell F
cannot occupy dot F1. Coupling for two other dot
pairs, A2-F2 and A3-F3, are also needed to couple the
cells A and F.

The completed cell circuit is illustrated in Fig. 13.
Using the same procedure, we can construct an analo-
gous cell circuit for any problem map.

5.3.4 Solving the problem by using the cell circuit

The three-color-map problem asks whether the given
map is colorable, and the answer is either “yes” or
“no”. To solve the problem by using the completed
cell circuit, we first anneal the circuit into an equilib-
rium state with global-minimum energy, then check to
see whether electrons in any coupled three-dot cells are
on dots of differing colors. If they are, the answer is
“yes” and colors of the occupied dots indicate the
coloring in which the map can be colored. If they are
not, the answer is “no”.

This solution is based on the following two prop-
erties:
(a) “A map is colorable” is equivalent to “the analo-
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gous cell circuit has one or more arrangements of
electrons in which no two electrons face each other at
the nearest neighbor distance.” We call the state of
such arrangements the “ground state.”

(b) There is repulsive-force energy between two elec-
trons that face each other at the nearest-neighbor
distance. Therefore a cell circuit will change its state
to minimize the number of such electron pairs.

In the process of annealing, a cell circuit for a
colorable map settles down to the ground state, and we
will find that electrons in any coupled cells are on dots
of differing colors. In a circuit for an uncolorable
map, on the other hand, the ground state cannot be
attained, and we will find that electrons in one or more
coupled-cell pairs are on the dots of the same color.

A similar solution using quantum-cell circuits
should exist for other NP-complete problems because
every NP-complete problem belongs to the same class
and one can be converted into another.

6. Conclusion

Analog computation is a processing method that solves
mathematical problems by applying an analogy of a
physical system to the problem. An idea for relating
quantum structures with analog computation is
presented. As an instance, a solution to the three-
color-map problem by using a quantum-cell circuit is
proposed. The computing process is parallel and
instantaneous, making it possible to obtain the solu-
tion quickly. Analog computation is a promising
architecture for quantum processors.

(This work was supported by a Grant-in-Aid for
Scientific Research on Priority Areas “Single-Electron
Devices” from the Ministry of Education, Science,
Sports and Culture.)
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