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SUMMARY A novel analog-computation system using
quantum-dot spin glass is proposed. Analog computation is a
processing method that solves a mathematical problem by apply-
ing an analogy of a physical system to the problem. A 2D array
of quantum dots is constructed by mixing two-dot (antiferro-
magnetic interaction) and three-dot (ferromagnetic interaction)
systems. The simulation results show that the array shows spin-
glass-like behavior. We then mapped two combinatorial opti-
mization problems onto the quantum-dot spin glasses, and found
their optimal solutions. The results demonstrate that quantum-
dot spin glass can perform analog computation and solve a com-
plex mathematical problem.
key words: analog computation, spin glass, quantum dot, spin,

combinatorial optimization problem

1. Introduction

One of the challenges in nanoelectronics is to develop
information processing systems that utilize quantum
mechanical effects. To construct such systems, we must
employ a computing paradigm that is suitable for a
quantum structure system. Some proposals for quan-
tum devices that have been advanced try to represent
a binary signal and perform Boolean logic operations
under a Neumann-type computing architecture [1]–[3].
But, these proposals shared some serious problems such
as that the input bits cannot be pipelined [4]. In con-
trast, analog computation using quantum structures
is a promising architecture for information processing
in nanoelectronics. This paper proposes an analog-
computation system using coupled-quantum-dot spin
glass.

Analog computation is a processing method for
solving a mathematical problem by applying an analogy
of a physical system to the problem [5]. To implement
analog computation, we must prepare an appropriate
physical system and use its physical quantities to rep-
resent all the problem variables. If the mathematical
relationships between the physical quantities are anal-
ogous to those of the problem, then we can find the
solution to the problem by operating the physical sys-
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tem and measuring the quantities. Analog computation
has the following features. 1) It is based on properties
of a physical system and not on symbolic operations.
2) Computation is parallel and instantaneous, because
the changes in the physical quantities occur simulta-
neously when the physical system is operated. Thus,
analog computation is one approach to avoiding the
Neumann bottleneck and solving complex problems in
a short time.

Spin glass is a kind of ferromagnetic-antiferromag-
netic mixture [6]. The ferromagnetic and antiferromag-
netic interactions distribute spatially in the spin glass
and there is competition between them. The ferromag-
netic interaction makes the spins at all lattice points
parallel, while the antiferromagnetic interaction makes
the spins at two neighboring lattice point antiparallel.
The result is that no single configuration of the spins
is uniquely favored by both kinds of interactions. This
phenomenon is commonly called “frustration.” Spin
glass is the most complex kind of condensed state en-
countered so far in solid-state physics. Finding the
ground state of a spin glass is analogous to solving
some combinatorial optimization problems. This may
therefore allow us to construct an analog computation
system that solves such problems.

In this paper we propose a novel analog-
computation system using coupled-quantum-dot spin
glass. In the following sections we first describe the
spin-glass-like behavior in a two-dimensional (2D) ar-
ray of coupled-quantum dots (Sect. 2), and then apply
an analogy of the quantum-dot spin glass to combinato-
rial optimization problems (Sect. 3). We demonstrate
that the spin glass can perform analog computation.
We also discuss issues related to the physical imple-
mentation (Sect. 4). Finally, we summarize the main
results (Sect. 5).

2. Coupled-Quantum-Dot Spin Glass

2.1 Model

Technological progress has enabled us to fabricate an
array of quantum dots. If the array is designed well and
the quantum dots are occupied by an appropriate num-
ber of single electrons, we can expect magnetic order
states in the electron system due to strong correlation
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Fig. 1 Dependence of the ground state level E0 and the 1st
excited state level E1 on the width of the box-shaped dot. The
Coulomb repulsion energy U is also given.

interaction. We first clarify the magnetic properties
of the array and then demonstrate that the array can
show a spin-glass-like behavior. In the following, we use
a GaAs/AlGaAs quantum dot as an analytic model.

We can neglect the valence-band and core electrons
in our analysis because these electrons in any dot are
highly localized and their wave functions do not overlap
with each other. Furthermore, because the energy of an
electron confined in a quantum dot is strongly quan-
tized, the energy spectrum of the electron is discrete.
A time-independent Schrodinger equation is solved nu-
merically for the ground state level E0 and the first
excited state level E1 in a box-shaped quantum dot.
The energy U of Coulomb repulsion between two elec-
trons sited on the same dot can also be calculated by
U = q2/4πε0εr(w/3) [2]. The result is shown in Fig. 1.
The difference between the levels E0 and E1 decreases
with dot width w. The excited level E1 is larger than
E0 + U . Thus, when the number of electrons is less
than twice the number of quantum dots in the array,
we can use the one-band extended Hubbard model [2],
[7] to analyze the magnetic properties of the quantum
dot array. The Hubbard-type Hamiltonian is given by

H =
∑
k,j,σ

tkjc
+
k,σcj,σ +

1
2

∑
k,j,σ

Ukjnk,σnj,−σ

+
1
2

∑
k,σ

Unk,σnk,−σ, (1)

where c+k,σ(ck,σ) is the creation (annihilation) operator
for an electron at quantum dot k with spin σ; nk,σ is
the number operator of this electron; tkj is the overlap
integral that represents the interdot coupling between
two quantum dots k and j; E0 is the ground state level
in a quantum dot; and Ukj is the Coulomb repulsion
between the electrons at the k- and j-th dots.

Fig. 2 Dependence of the overlap integral t on the interval and
barrier height between the coupled dots for two barrier heights:
240 and 500meV. Here d is the width of the quantum dot.

2.2 Ferromagnetic and Antiferromagnetic States

First we clarify quantitatively how the overlap integral t
depends on the interval and barrier height between two
nearest-neighbor dots. It depends on physical factors
such as the dot size and both the interval and the bar-
rier height. When ψ1 (ψ2) is the electron wave function
at dot 1 (dot 2), it is given by

t =
∫
ψ1{V (x) + E0}ψ2dx, (2)

where V (x) is the potential profile of the coupled quan-
tum dots. Figure 2 shows the calculated dependence of
the overlap integral t on barrier height and interval for
different widths of quantum dots. To investigate its
dependence on the barrier height, in addition to a bar-
rier height of 240meV (GaAs/AlGaAs quantum dot),
we also used a barrier height of 500meV to calculate t.
The electron effective massm∗ was taken to be 0.067m0
and the dielectric coefficient was 10. The overlap inte-
gral t decreased from 100 to 0.01meV with increasing
interval between the coupled quantum dots. When the
interval was constant, t for a barrier height of 240meV
was more than that for 500meV.

Next we calculated the low-energy eigenstates of
two electrons in a two-dot system using Hamiltonian
(1). As is well known, the two electrons in the coupled
quantum dots can be described by singlet and triplet or-
bital states. We diagonalized the Hamiltonian numeri-
cally to calculate all the eigenstates using the four un-
derlying basis vectors. Figure 3 shows the dependence
of the ground state and the first excited state levels on
the ratio of the Coulomb repulsion U to the integral t.
The ground state of the two-dot system corresponds to
the singlet (antiferromagnetic) state, in which each dot
is occupied by one electron and the spins of the two
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Fig. 3 (a) The two electrons and two nearest-neighbor quan-
tum dots and (b) the levels of the low-energy singlet and triplet
states as a function of U/t. J12(< 0) is the spin interaction coef-
ficient.

Fig. 4 (a) The two electrons and three neighbor quantum dots
and (b) the levels of the low-energy singlet and triplet states as a
function of U/t. J13(> 0) is the spin interaction coefficient when
U/t is larger than 7.

electrons are antiparallel, as shown in Fig. 3(a). The
excited state is the triplet state in which the spins of
the two electrons are parallel.

We also calculated the low-energy eigenstates of
two electrons in a three-dot system in the same man-
ner. Figure 4 shows the dependence of the ground state
and the first excited state on U/t. In the case of the
three-dot system, owing to the Coulomb repulsion, the
two electrons preferentially occupied the two dots on
the left and right sides. The ground state of the two
electrons in the three-dot system corresponds to the

Fig. 5 Simulated ground state of a 2D quantum-dot array con-
sisting of 20 quantum dots and 16 electrons. The arrow represents
the spin polarization. It shows spin-glass-like behavior.

triplet (ferromagnetic) state, in which the spins of the
two electrons are parallel (when U/t is larger than 7).
The excited state is the singlet state. Although the cen-
tral dot in the three-dot system is not occupied by an
electron, it plays an important role in the ferromagnetic
interaction.

2.3 Coupled-Quantum-Dot Spin Glass

The two electrons in two-dot and three-dot systems
showed the antiferro- and ferromagnetic states, respec-
tively. Here we consider how to design a 2D array
of quantum dots by mixing two-dot (antiferromagnetic
interaction) and three-dot (ferromagnetic interaction)
systems. Figure 5 gives an example of such a 2D ar-
ray consisting of 20 quantum dots and 16 electrons.
The distance between the two dots at the left and right
sides in the three-dot system is equal to that between
the two quantum dots in the two-dot system. It is diffi-
cult to diagonalize the Hamiltonian to calculate all the
eigenstates since the number of underlying basis vectors
is too large (about 1017). We used Monte-Carlo sim-
ulation method, as described in Ref. [7], to calculate
the spin polarization for the ground state. The simu-
lated ground state of the quantum-dot array is shown in
Fig. 5. There is competition between the ferromagnetic
and antiferromagnetic interactions in the quantum-dot
array. As a result of this competition, no single con-
figuration of the spins is uniquely favored by all the
interactions. For example, the energy of the array does
not change even if quantum dot A takes the spin polar-
ization represented by the arrow placed in parentheses.
This is called as “frustration.” This result indicates
that the quantum-dot array shows spin-glass-like be-
havior.

In the case of strong electronic correlations (U/t�
1), Hubbard model is transformed into the Heisenberg-
type model [8].
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(a)

(b)

(c)

Fig. 6 (a) Example of a max cut problem with five endpoints
and (b) a corresponding quantum-dot spin glass and (c) a possible
layout of the quantum-dot spin glass.

H = −
∑
k<j

JkjSk · Sj −
∑

k

JkkSk, (3)

where Sk and Sj are spin polarizations of the electrons
at quantum dots k and j, and Jkj is the interaction co-
efficient between the spins of those electrons. The co-
efficient Jkj is defined as the energy difference between
the antiferromagnetic and ferromagnetic states of the
k and j electron spins, as shown in Figs. 3(b) and 4(b).
If the system is ferromagnetic then Jkj > 0, otherwise
Jkj < 0. Jkk is the bias interaction coefficient, such as
the interaction between the electron spin and the local
magnetic field. The spin interaction is a short-range
phenomenon, so here we take into account only the in-
teraction between the neighbor quantum dots. We will
use model (3) to analyze the ground state of the spin
glass using in the following.

3. Analog Computation

3.1 Relating Spin Glass to Combinatorial Optimiza-
tion Problem

A combinatorial optimization problem is either a mini-
mization problem or a maximization problem. Solving

one amounts to finding the best optimal solution among
a number of possible solutions. So far a wide variety
of such problems have emerged from such diverse areas
as economics, engineering, and VLSI design. However,
there exists a class of combinatorial optimization prob-
lems of such inherent complexity that solving them re-
quires a computational effort that grows exponentially
with the size of the problem. It turns out that a num-
ber of combinatorial optimization problems share some
of the essential features of spin glass such as frustration
[6]. The spin glass mathematical models are analogous
to some of the combinatorial optimization problems.
Therefore spin glass can be used to map combinatorial
optimization problems and solve them. To implement
analog computation, an optimal problem is mapped
onto a coupled-quantum-dot spin glass as follows. 1)
Formulate the optimization problem as a binary vari-
able 0-1 problem; 2) Use the spin polarization to repre-
sent the variable and define that “up” (“down”) polar-
ization of the dot spin as corresponding to the variable
value “1” (“0”); 3) Design the interaction coefficient
J between spins at quantum dots such that minimiz-
ing the energy function of the spin glass corresponds
to minimizing (or maximizing) the cost function of the
problem, i.e. the ground state of the spin configuration
is mapped to the optimal solution of the problem. 4)
Perform the computation. Because the spin configu-
ration evolves toward its ground state spontaneously,
performing the computation is equal to letting the spin
glass settle down to its ground state after being given
an initial spin configuration; 5) Find a optimal solution
of the problem, i.e. detect the spin polarization at each
dot. The analog computation of spin glass may provide
the means to solve complex problems in a short time.

3.2 Implementing Combinatorial Optimization Prob-
lems

We will describe two optimization problems: the max
cut problem and the independent set problem, and de-
sign the structures of the coupled-quantum-dot spin
glasses for solving them. Figure 6(a) shows an example
of a graph partitioning problem—the max cut problem.
Given a five-endpoint graph G with positive weights on
six branches wkj(= wjk), the max cut problem is defined
as the problem of finding a partition of the graph into
two disjoint groups G1 and G2 such that the sum of the
weights of the branches that have two endpoints in two
groups, respectively, is maximal. We use a variable xk

to represent the kth endpoint, and define xk = 1 if the
endpoint is in G1, otherwise xk = 0. Then the problem
can be formulated as maximizing the cost function
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Fig. 7 (a) Example of an independent set problem with ten
endpoints and (b) a corresponding quantum-dot spin glass to
which a uniform magnetic field is applied.

f(x) =
∑
k<j

wkj{(1− xk)xj + xk(1− xj)} (4)

=
∑
k<j

−2wkjxkxj +
∑
k=1


∑

j=1

wkj


xi. (5)

Consider mapping the max cut problem onto quantum-
dot spin glass. We construct a quantum-dot spin glass
with fifteen quantum dots and ten electrons, as shown
in Fig. 6(b). We define the “up” polarization of the spin
to represent the endpoint being in G1 and “down” to
represent the endpoint being in G2. If we let

Jkj = −2wkj (6)

and

Jkk =
∑
j=1

wkj (7)

then the expression of the cost function becomes equal
to that of Hamiltonian (3). But, the sign of the cost
function is opposite to that of Hamiltonian (3). Thus,
minimizing the energy function of the spin glass is anal-
ogous to maximizing the cost function of the max cut
problem. Consequently, an optimal solution can be ob-
tained as long as the spin glass converges to its ground
state.

In some combinatorial optimization problems, in
addition to a cost function, there is a set of con-
straint that are imposed on the problems. Figure 7(a)
shows such an example — the independent set prob-
lem. Given a graph G of ten endpoints with weights on

nineteen branches wkj = wjk = 1, the problem is de-
fined as that of finding a maximal independent set Gs

of endpoints, i.e. finding a subset Gs in G such that for
all endpoints k, j in Gs the weight wkj is 0 (This is
a constraint) and such that Gs is maximal. The space
of the solutions is putted under a constraint that wkj

must be 0 for endpoints k and j in Gs. (In contrast,
there is no such a constraint in the max cut problem, all
combination of the variables may be the solutions). To
formulate the problem, we use a variable xk to repre-
sent the kth endpoint, and define xk = 1 if the endpoint
is in Gs, otherwise xk = 0. Then the cost function to
be maximized is defined

f(x) =
∑

k

xk (8)

subject to the constraint

wkjxkxj = 0, (9)

where wkj is 1 if endpoints k and j are connected by a
branch, otherwise wkj = 0.

We implement the problem in a quantum-dot spin
glass, as shown in Fig. 7(b). The “up” polarization of
the spin to represent the endpoint in Gs and “down”
to represent the endpoint outside Gs. To satisfy the
constraint (9), the spin interaction coefficients that cor-
respond the branches (in Fig.7(a)), are taken to be −1
(antiferromagnetic). Furthermore, to make each spin
polarization to trend “up,” we apply a uniform mag-
netic field (along the z axis) to the spin glass. The
Zeeman splitting is set to be little smaller than spin in-
teraction coefficient Jkj . Thus, minimizing the energy
function of the spin glass is analogous to maximizing
the cost function of the independent set problem.

3.3 Results

We analyzed the ground states of the quantum-dot
spin glasses (Figs. 6(b) and 7(b)) using the Heisenberg
Hamiltonian and by simulated annealing [7], [8]. Fig-
ure 8 shows the typical development of the system en-
ergy for the max-cut-problem spin glass. In the initial
arrangement, the parallel electron spins at higher en-
ergy in the quantum dot array. Then the system en-
ergy decreases with changing eigenstate. Finally the
spin glass reaches one of its ground states, as shown in
Fig. 8(b). The “up” spin represents the endpoint be-
ing in G1 and “down” represents it being in G2. The
ground state gives one of the optimal solutions to the
max cut problem. Furthermore, Fig. 7(b) shows the
calculated ground state of the independent-set-problem
spin glass. The “up” spins make up the maximal in-
dependent set. These results show that quantum-dot
spin glass can perform analog computation.

4. Discussion

Fabrication of the spin glass requires control of the in-
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Fig. 8 (a) Typical development of the energy of the max-cut-
problem spin glass, the initial temperature T0 is set to 4K and
temperature T is decreased exponentially, and (b) one optimal
solution (group 1 and group 2) to the max cut problem.

terval and barrier height between near neighbor quan-
tum dots. Optimum design of these two physical fac-
tors can be achieved through appropriate arrangement
of the quantum dots and selection of the barrier mate-
rials. Several methods can produce a 2D array of quan-
tum dots [3], [9]. We have considered a selective-area-
nanodeposition method [3] for the fabrication of our 2D
array of quantum dots. In this method nucleation sites
are first created on the substrate by means of a scan-
ning tunneling microscope (STM) tip, and then nano-
sized particles are deposited on it. The particles tend
to occupy the nucleation sites first. The accuracy of the
interaction coefficient depends on the fabrication accu-
racy of the distance between the dots in the quantum-
dot spin glass. A simple estimate for a GaAs/AlGaAs
quantum-dot spin glass, as shown Fig. 6(b), indicates
that the interaction coefficient is approximately in pro-
portion to the distance between the quantum dots. If
the distance between the quantum dots can be con-
trolled in an atomic scale (about 0.3 nm), an accuracy of
the interaction coefficient, that is smaller than 0.1meV,
is readily achievable.

Furthermore, the desired value for exchange in-
teraction coefficient J can also be obtained by chang-
ing the materials serving as barriers between the near
neighbor dots. For example, to nullify the spin inter-
action between quantum dots, we only remove the film
between the input lines by electron beam lithography
and etching, and form an air gap to prevent spin inter-

action between the quantum dots. Figure 6(c) shows
a possible layout of the quantum-dot spin glass cor-
responding to the max cut problem in Fig. 6(b). The
diameter of the central dots is designed to be smaller
than the other quantum dots so that the ground state
level of the single electron in the central dot is higher
than that in the other quantum dots. Therefore, the
sign and magnitude of the interaction coefficient Jkj

between the spins of two electrons can be controlled
by the position of the central dot and the distance (or
barrier material) between the quantum dots.

It is also important to detect the spin polarization
of the electrons at the quantum dots. It is probable
that a magnetic STM/AFM (atomic force microscope)
tip can be used to measure the spin polarization of the
dot [3], [7]. In an STM/AFM, the tunneling current de-
pends on the relative spin polarization of the tip and the
quantum dot. If the spin of the tip is known, the spin
polarization of the quantum dot can be determined by
measuring the tunneling current. Details of the writing
(reading) mechanism are not mentioned here.

In analog computation, the ground state of the
coupled-quantum-dot spin glass is mapped to an op-
timal solution of the problem. The dynamics of spin
glass is considered to be the computational process.
To quantify the computation speed, it will be neces-
sary to model the dynamics of spin glass. The actual
dynamical evolution of spin glass is extremely compli-
cated because the system is in contact with the environ-
ment. The dynamics strongly depends on the energy-
dissipation processes, such as the phonon and photon
emission process. In future research the dynamics will
be investigated systematically.

5. Conclusion

We proposed a novel analog-computation system us-
ing quantum-dot spin glass. We constructed a 2D ar-
ray of quantum dots by mixing two-dot (antiferromag-
netic interaction) and three-dot (ferromagnetic inter-
action) systems. Simulation results indicate that the
quantum-dot array shows spin-glass-like behavior. We
then mapped two combinatorial optimization problems
onto quantum-dot spin glass and found their optimal
solutions. The results demonstrate that quantum-dot
spin glass can perform analog computation.
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