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SUMMARY We developd a method of implementing a

multiple-valued Hop�eld network on electronic circuits by us-

ing single-electron circuit technology. The single-electron circuit
shows quantized behavior in its operation because of the discrete
tunnel transport of electrons. It can therefore be successfully
used for implementing neuron operation of the multiple-valued
Hopfield network. The authors developed a single-electron neu-
ron circuit that can produce the staircase transfer function re-
quired for the multiple-valued neuron. A method for construct-
ing a multiple-valued Hopfield network by combining the neuron
circuits was also developed. A sample network was designed that
solves an example of the quadratic integer-programming prob-
lem. And a computer simulation demonstrated that the sample
network can converge to its optimal state that represents the
correct solution to the problem.
key words: single electron, Hop�eld network, multiple valued

1. Introduction

One of the challenges in microelectronics is the develop-
ment of novel electronic devices that can perform neural
computing by utilizing functional properties of quan-
tum phenomena. We have developed one such compu-
tation device: a multiple-valued Hopfield network de-
vice that utilizes the quantized transport properties in
single-electron tunneling.

The Hopfield network is a kind of recurrent neural
network for solving combinatorial optimization prob-
lems (Refs. [1] and [2]). It consists of a large network
of processing elements (neurons) interconnected bidi-
rectionally with signal connections having various con-
nection weights. Each neuron receives an input signal
from every other neuron and sends an output signal
to every other neuron. The neuron has a binary out-
put state, 0 or 1, and changes its state in response to
the inputs, according to a given transition rule. All
neurons operate in parallel and each adjusts its own
state to the states of all the others; in consequence, the
whole network converges to a final configuration. The
structure of combinatorial optimization problems can
be mapped onto the structure of a Hopfield network by
deciding the connection weights between the neurons.
In this way, we can find the solution to a problem simply
by observing the final configuration that the Hopfield
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network reaches. The unique and important feature of
the Hopfield network is that a given problem is solved
through concurrent operation of all neurons in the net-
work; therefore, the Hopfield network can be used to
produce computation devices that can solve optimiza-
tion problems in a short time regardless of the size of
the problem.

A promising subject of research on the Hopfield
network is to develop a multiple-valued extension to or-
dinary Hopfield networks. Ordinary Hopfield networks
employ binary-state neurons for processing, so the kind
of optimization problem that can be accepted is lim-
ited to examples with binary variables (0 and 1). If we
can develop an improved Hopfield network that manip-
ulates multiple-valued variables (i.e., integer variables
0, 1, 2, 3, etc.), then we will be able to construct a
novel computation device that can deal with optimiza-
tion problems from a wide range of subjects. To meet
this requirement, Aiyoshi and Yoshikawa developed the
concept of the multiple-valued Hopfield network and
showed that the neuron element for their network has
to have amultistep or staircase transfer function instead
of a simple threshold function used in ordinary Hopfield
networks (Refs. [3] and [4]). They also demonstrated as
an example that quadratic integer-programming prob-
lems can be solved by using the multiple-valued Hop-
field network.

The crutial problem in developing actual devices
or LSIs for the multiple-valued Hopfield network is how
to implement the staircase neuron function on an elec-
tronic circuit. Presently available electronic circuits for
generating a staircase function, such as a comparator
array combined with a multitude of reference voltage
sources, consist of many device elements and, conse-
quently, require a large volume of space. They there-
fore cannot be used for LSI implementation. So we
must develop a novel neuron device for constructing
multiple-valued Hopfield network LSIs.

Presumably, this requirement can be met by us-
ing single-electron circuits, a quantum electronic circuit
based on the Coulomb blockade effect in electron tun-
neling. The single-electron circuit changes its internal
state through a discrete event of electron tunneling in
response to the inputs and, thereby, changes its out-
put voltage as a discrete function of the inputs. The
authors therefore expect that the single-electron circuit
will concisely produce the staircase neuron function re-
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quired for the multiple-valued Hopfield network. To
give a practical form to this idea, we propose in this
paper an actual circuit construction for single-electron
multistep neuron devices.

In the following sections, first, the concept of
the multiple-valued Hopfield network is outlined. The
multiple-valued Hopfield network can solve optimiza-
tion problems that manipulate multiple-valued vari-
ables. On the other hand, it requires a special neu-
ron element with a staircase transfer function (Sect. 2).
Next, we present an idea for implementing a staircase
neuron function by using the single-electron circuit.
The single-electron circuit has inherently multiple-
valued properties in its operation owing to the discrete
tunnel transport of electrons. We develop a circuit
structure for neuron elements and demonstrate by com-
puter simulation that the developed neuron circuit can
successfully produce a multistep output voltage in re-
sponse to the input (Sect. 3). By combining a number
of the neuron circuits, we construct the multiple-valued
Hopfield network; as an example, a sample network,
which represents a problem instance of the quadratic
integer programming, is designed. The problem-solving
behavior of the network is then demonstrated by com-
puter simulation. It is shown that the network does
converge successfully to its optimal configuration that
corresponds to the correct solution (Sect. 4). The au-
thors hope that this paper will stimulate the thinking
of readers who are aiming to create neural computing
devices that utilize quantum phenomena.

2. The Concept of the Hopfield Network

2.1 An Ordinary Hopfield Network

The Hopfield network is a computation device for solv-
ing combinatorial optimization problems and employs
the operation of a specific recurrent network. (For de-
tailed explanations, see Refs. [1] and [2].) The con-
figuration of the network is illustrated in Fig. 1. The
network consists of neurons (denoted by triangles) and
connections (denoted by solid circles). The output of
each neuron feeds back into inputs of other neurons.
Denoted by Wij is the connection weight to neuron i
from neuron j, θi is the bias-connection weight to neu-
ron i from a bias that is fixed at the value of 1, and
xi is the output of neuron i. The connection weights
Wij and θi can be given any desired value under the
restrictions that Wij = Wji and Wii = 0. The neu-
ron output xi is binary (i.e., xi = 1 or 0) in ordinary
Hopfield networks. A set of neuron outputs xi is called
the state of the network.

In this network, each neuron i takes a weighted
sum of its inputs according to the following equation:

si =
∑

j

Wij xj + θi. (1)

Fig. 1 Concept of the Hopfield network. Denoted by Wij is
the weight of connection between neuron i and neuron j (Wij =
Wji), θi is the weight of connection between neuron i and a bias
of 1, si is the input for neuron i given by Eq. (1) in the text, and
xi is the output of neuron i.

And each neuron generates the corresponding output xi
(= 1 or 0), following a given transfer function (a func-
tion for determining output xi from the weighted sum
si). In the network, all neurons operate in parallel to
update their outputs continuously, and the whole net-
work converges to an optimal configuration through the
updating process. By choosing the connection weights
and using an appropriate transfer function for neurons,
we can map a given optimization problem onto the net-
work structure. In this way, finding the solution to the
problem can be reduced to finding the optimal config-
uration of the network. In problem solving, we set the
network in an initial state (any state will do), then al-
low it to change its state without restraint. After some
transition time the network converges to a final state.
If convergence has been successful, the solution to the
problem is obtained from the final state of the network
(see Appendix A).

As an example, we here take up the unconstrained
quadratic-programming problem that is stated as:

Given a set of coefficients Aij and Bi (Aij = Aji, Aii
�= 0; i, j = 1, 2, . . ., n), minimize the objective function

1
2

n∑

i

n∑

j

Aij xi xj +
n∑

i

Bi xi. (2)

To solve this problem, we prepare a Hopfield network
such that the output of each neuron represents each
variable xi. For an ordinary Hopfield network with
binary-output neurons, an acceptable problem is lim-
ited to examples in which the variables are binary (i.e.,
xi ∈ {0, 1}). Under such 0-1 restraint, a square term
xi2 can be replaced with xi and, consequently, Eq. (2)
can be rewritten as

1
2

n∑

i

n∑

j �=i

Aij xi xj +
n∑

i

(Bi+
1
2
Aii) xi. (3)

It has been proved that this 0-1 programming can
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Fig. 2 Elements for an ordinary (binary) Hopfield network: (a)
the transfer function for neurons, and (b) the connection weights
for mapping the quadratic 0-1 programming given by Eq. (2) in
the text.

be mapped onto the Hopfield network, by using the
single-threshold transfer function for neurons illus-
trated in Fig. 2(a), with the connection weights shown
in Fig. 2(b). The value of solution xi that minimizes
the objective function of Eq. (3) can be read from the
final state of the network; that is, the value of solution
xi is equal to the output of neuron i.

2.2 The Multiple-Valued Hopfield Network

In the problem expressed by Eq. (2), we here relax the
0-1 restraint on variables and assume that each variable
xi can take an integer from 0 to N . The problem is
therefore expressed as:

minimize

1
2

n∑

i

n∑

j

Aij xi xj +
n∑

i

Bi xi,

where xi ∈ {0, 1, 2, ..., N} (i = 1, 2, ..., n). (4)

This extended problem (the quadratic interger-
programming problem) is beyond the range of ordinary
Hopfield networks. For problem solving, a more so-
phisticated architecture is required. (Strictly speaking,
we can manage to solve this problem with an ordinary
Hopfield network if we use a large number of neurons.
But this is impracticable in LSI implementation.) To
meet this requirement, Aiyoshi and Yoshikawa devel-
oped an improved Hopfield network that can manip-
ulate multiple-valued variables (see Refs. [3] and [4]).
This network is called the multiple-valued Hopfield net-
work.

The multiple-valued Hopfield network has the
same configuration as that of its ordinary relatives
(see Fig. 1) and is under the same restrictions that
Wij = Wji and Wii = 0. The difference between
them is in the operation of neurons. A neuron of the
multiple-valued Hopfield network produces a quantized
output according to a staircase transfer function with
a multiple threshold. The tranfer function required for
neuron i is illustrated in Fig. 3(a). Using this multiple-
valued neuron, the quadratic integer programming de-
scribed by Eq. (4) can be mapped onto a network that
has the connection weights given in Fig. 3(b). As in the

Fig. 3 Elements for the multiple-valued Hopfield network: (a)
the staircase transfer function for neuron i, and (b) the con-
nection weights for mapping the quadratic integer programming
given by Eq. (4) in the text.

Fig. 4 Modified elements for the multiple-valued Hopfield net-
work: (a) the modified staircase transfer function for neuron i,
and (b) the connection weights for mapping the quadratic integer
programming given by Eq. (4) in the text.

ordinary Hopfield network, the solution to the problem
is obtained from the final state of the network; that
is, the value of solution xi is equal to the output of
neuron i. (Strictly speaking, the shape of the transfer
function for neuron i depends on a sign of coefficient
Aii. The function illustrated in Fig. 3(a) is for Aii > 0.
For Aii < 0 and Aii = 0, see Refs. [3] and [4]).

Next, we assume that a given neuron has a transfer
function like that illustrated in Fig. 4(a) instead of that
in Fig. 3(a) (a, b, and c in Fig. 4(a) are the characteris-
tic coefficients that determine the shape of the transfer
function). This is the characteristic of the neuron de-
vice that will be developed in the next section. The
problem described by Eq. (4) can also be mapped suc-
cessfully onto the network provided the modified con-
nection weights given in Fig. 4(b) are used.
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3. Constructing the Multiple-Valued Neuron
Device Using Single-Electron Circuits

3.1 The Concept of the Single-Electron Circuit

The single-electron circuit is an electronic circuit con-
sisting of tunnel junctions and capacitors that is de-
signed for manipulating electronic functions by con-
trolling the transport of individual electrons. (For a
detailed explanation, see Ref. [5].) A single-electron cir-
cuit has a number of nodes that are interconnected by
the tunnel junctions. Electrons in each node can tun-
nel to another node through the tunnel junction. The
internal state of the circuit is determined by the con-
figuration of its electrons (i.e., the pattern in which
the electrons are distributed among the nodes). The
circuit changes its electron configuration through elec-
tron tunnelings in response to the inputs and, thereby,
changes its output voltage as a function of the inputs.
A change of the electron configuration caused by a tun-
neling event can occur, at low temperatures, only when
the free energy of the circuit decreases in the tunneling
event. This phenomenon is called the Coulomb block-
ade. Utilizing this phenomenon, the single-electron
circuit controls the transport of individual electrons
to produce various functions such as digital logic and
memory operations.

The single-electron circuit has been receiving in-
creasing attention because it can be used to produce
LSIs that combine large integration and ultralow power
dissipation. The key point for constructing single-
electron circuit devices is to fabricate the circuit ele-
ments (tunnel junctions and capacitors) in very minute
dimensions (50 nm or less) because the Coulomb block-
ade effect emerges only when the capacitance of each
element is reduced to femto farads or less. The technol-
ogy for such nanofabrication is still immature but has
been making steady progress. Several elemental de-
vices, such as logic gates and memory cells, have been
produced in recent years, and a prototype of single-
electron LSI can be expected in the near future.

3.2 Multiple-Valued Characteristic of Single-Electron
Circuits

A conspicuous property of the single-electron circuit is
that the circuit shows “quantized behavior” in its op-
eration. This quantization is caused by the fact that
the charge on each node of the single-electron circuit
is changed only through electron tunnelings. Because
one electron is transferred through a tunneling event,
the variation of the node charge is necessarily quan-
tized in units of the elementary charge; therefore, the
node charge is a discrete variable, so the node poten-
tial is also discrete. In consequence, the output voltage
of a single-electron circuit changes as a discontinuous

Fig. 5 Configuration of the neuron circuit for the
multiple-valued Hopfield network.

function of the input voltage. These properties can be
well utilized for the present purpose; that is, creating a
multiple-valued neuron device in a compact construc-
tion.

3.3 Creating the Multiple-Valued Neuron Device Us-
ing a Single-Electron Circuit

Our purpose is to construct a single-electron circuit that
changes the charge on its output node (therefore its out-
put voltage) as a staircase function of the input voltage.
For this purpose, we take Tucker’s single-electron in-
verter and modify its circuit parameters to create a
staircase transfer function (for the details of Tucker’s
original circuit, see Ref. [6]).

The circuit we use for the neuron device is illus-
trated in Fig. 5. It consists of four tunnel junctions
(Cj1 through Cj4), two input capacitors (C1 and C2),
two bias capacitors (C3 and C4), a load capacitor (C5),
and two voltage sources V dd and −V ss. The circuit
accepts a voltage input V in and produces the corre-
sponding voltage output V out. The circuit has three
island nodes (L, M , and N), and its internal state is
expressed by a set of numbers (l,m, n) of excess elec-
trons on the three nodes.

Depending on capacitance parameters, this cir-
cuit shows complex internal states and therefore shows
various input-output characteristics. To create the
multiple-valued neuron device, we set the circuit pa-
rameters so that the circuit will operate with a staircase
transfer function. In determining the optimum param-
eters, we used the stability diagram of the circuit as a
guide map. (The stability diagram illustrates the inter-
nal states of a single-electron circuit in a multidimen-
sional space of circuit variables—namely, the voltages
of powers and inputs and the capacitances of tunnel
junctions and capacitors. For details of the stability
diagram, see Ref. [7].) The optimum set of parameters
depends on what kind of staircase function we require
(i.e., what values are needed for the characteristic co-



YAMADA and AMEMIYA: A MULTIPLE-VALUED HOPFIELD NETWORK DEVICE USING SINGLE-ELECTRON CIRCUITS
1619

Fig. 6 The tranfer function (input-output curve) of the
multiple-valued neuron circuit of Fig. 5. Simulated using the
Monte Carlo method given in Ref. [8]. The temperature is 0 K.

efficients a, b and c in Fig. 4(a)). An example set of
parameters is:

Cj1 = Cj4 = 3 aF, Cj2 = Cj3 = 5 aF,

C1=C2=5 aF, C3=C4=10 aF, C5=150 aF,

V dd = 5.20 mV, −V ss = 0 mV. (5)

The corresponding transfer function is illustrated in
Fig. 6. The output voltage discontinuously jumps by
a constant decrement as the input voltage increases
and, in consequence, a staircase transfer function is ob-
tained. (The authors simulated the operation of single-
electron circuits by using the Monte Carlo method com-
bined with the basic equations for electric-charge dis-
tribution, charging energy, and tunneling probability.
For details on this method, see Ref. [8]).

3.4 The Stability Diagram of the Neuron Circuit

We explain the operation of the neuron circuit by using
the stability diagram. The stability diagram for this
circuit configuration with given capacitance parameters
is plotted in Fig. 7 on a plane of two voltage variables,
input voltage V in and power voltage V dd (the value of
−V ss is fixed at 0mV). Plain-colored regions marked at
(l,m, n) are stable regions in which the circuit stabilizes
in an internal state (l,m, n). The shaded region is an
unstable zone in which electron tunneling frequently
occurs and the circuit consequently alternates between
two or more internal states. The stable regions take on
various configurations and most regions overlap with
one another.

We operate the circuit on an operating line (corre-
sponding to V dd = 5.20mV (see Eq. (5)) illustrated by
PQ in Fig. 7. There is no overlap of the stable regions
on this operating line, so the internal state of the cir-
cuit can definitely be determined by input voltage V in;
e.g., in the figure, the circuit takes internal state (0, 0,

Fig. 7 Stability diagram for the multiple-valued neuron circuit.
For the capacitance parameters, see the text. The value of −V ss
is set at 0mV. The circuit is operated on line PQ.

Fig. 8 Another instance of the staircase transfer function. The
set of paramerers is: Cj1 = Cj4 = 3 aF, Cj2 = Cj3 =
5 aF, C1 = C2 = 5 aF, C3 = C4 = 10 aF, C5 = 400 aF, V dd =
5.20 mV, −V ss = 0 mV. The temperature is 0 K.

0) at point P and (0, 3, 0) at point R. As input volt-
age V in increases, the internal state changes in the or-
der: (0, 0, 0), (0, 1, 0), (0, 2, 0), (0, 3, 0), (0, 4, 0), (0, 5, 0).
As the input voltage V in increases, electrons are added
one-by-one to the output node. The output voltage
therefore varies as a staircase function of the input, as
illustrated in Fig. 6.

By designing the circuit parameters, we can control
the number of steps in the transfer function. Figure 8
illustrates the transfer function of neuron circuit with
a different set of parameters.

4. Operation of a Multiple-Valued Hopfield
Network

4.1 Constructing a Multiple-Valued Hopfield Network

The multiple-valued Hopfield network can be con-
structed by combining the developed neuron circuits
into a network. We illustrate here a sample net-
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Fig. 9 The value of the problem function given by Eq. (6) in
the text, tabled for all possible combinations of variables x1, x2,
and x3. The function takes the minimum, −50, for the variable
set x1 = 2, x2 = 2, and x3 = 0.

work that solves an instance of the quadratic integer-
programming problems. In the following, we determine,
first, a set of connection weights for a problem instance.
Then, using the determined set of connection weights,
we demonstrate by computer simulation the problem-
solving operation of the network.

Consider the following quadratic integer-program-
ming problem:

minimize

3x21 + 6x22 + 6x23 + 4x1x2 − 2x2x3 + x3x1

−20x1 − 31x2 + x3, (6)

where xi ∈ {0, 1, 2, 3, 4, 5}.

In advance of problem solving with the Hopfield net-
work, we calculated the value of this function for all
possible combinations of variables xi. The results are
tabled in Fig. 9. The function takes the minimum, −50,
for the variable set x1 = 2, x2 = 2, and x3 = 0.

To solve this problem instance, we prepared a net-
work with three neurons to represent problem variables
xi by the output of i-th neurons (i = 1, 2, 3). We used
the neuron circuit whose characteristic is illustrated
in Fig. 6; (characteristic coefficients are a = 1.02mV,
b = 1.02mV, and c = 5.23mV). The required connec-
tion weights between the neurons can be determined by
using the relation given in Fig. 4(b). The overall config-
uration of the network, together with the determined
connection weights is given in Fig. 10.

Fig. 10 The configuration of the multiple-valued Hopfield net-
work together with the values of the connection weights. This
circuit is for the quadratic integer-programming problem given
by Eq. (6) in the text.

4.2 Problem Solving Operation of the Network

For problem solving, it is essential that, starting with a
given initial state, the network circuit should converge
to its minimum energy states. To observe the behavior
of the sample network, we simulated the state transition
of the network.

The network consists of a neuron unit and a con-
nection unit (see Fig. 10). Each unit was simulated by
using the following method.
(i) Neuron unit: We used the Monte Carlo method for
simulating the neuron unit because it is essential to
use the Monte Carlo method for simulating the dis-
crete tunnel events in single-electron circuits. In sim-
ulation, we used the same parameter set as that given
in Sect. 3.3. The tunnel resistance was assumed to be 3
MΩ for all junctions, and the temperature was assumed
to be 0 K.
(ii) Connection unit: We considered the connection unit
as a blackbox that produced output si in response to in-
put xi without time delay, and we calculated its input-
output characteristic simply by using Eq. (1). The rea-
son we used the simple calculation instead of the Monte
Carlo method is as follows. The connection unit has to
generate both of positive analog weights and negative
ones, as shown in Fig. 10. A linear amplifier is there-
fore required for actual implementation. Such ampli-
fiers cannot be constructed by single-electron circuits,
so we will have to use CMOS circuits for implement-
ing the connection unit. (This means that an LSI chip
for the multiple-valued Hopfield network will have a
hybrid structure of single-electron neuron circuits and
CMOS connection-weight circuits: see Appendix B) For
simulating CMOS circuits, we do not need to use the
Monte Carlo method; we can grasp the circuit operation
through the simple calculation. (It will take enormous
computing time if we use the Monte Carlo method to
simulate CMOS circuits because the number of elec-
trons concerned is too large.)

The results of the simulation are illustrated in
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Fig. 11 State transition in the sample network. The results of
two trials are plotted (solid curve and dashed curve). The net-
work can successfully reach the minimum state that corresponds
to the correct solution to the problem.

Fig. 11. In the figure, the state of the sample network
is expressed by a normalized set of three neuron out-
puts (u1, u2, u3), where ui is the output of i-th neu-
ron normalized by the characteristic coefficient a (i.e.,
ui = x i/a). The circuit was initially set at state (5,
5, 5), then it was allowed to change its state without
restraint. After some transition time, the circuit sta-
bilized in the final state (2, 2, 0) that corresponds to
the correct solution to the problem. This procedure,
a trial, was repeated many times using a different se-
ries of random numbers; the results of two trials are
illustrated in the figure. It can be seen that the circuit
successfully reaches the global minimum state, (2, 2, 0).
We repeated the same trial many times and confirmed
that every trial resulted in successful convergence. In
this way, we can find the minimum state of the network
and, thus, the correct solution to the problem.

5. Conclusion

We developed a method of implementing the multiple-
valued Hopfield network on electronic circuits by us-
ing the single-electron circuit technology. The single-
electron circuit shows quantized behavior in its oper-
ation. This behavior results from the discrete tunnel
transport of electrons, so the operation of the multiple-
valued Hopfield network can be implemented easily by
using single-electron circuits. We developed a single-
electron neuron circuit that can produce the staircase
transfer function required for the multiple-valued neu-
ron; the neuron circuit produces a multistep output
voltage in response to the weighted sum of its inputs.
By combining the developed neuron circuits, we de-
signed a sample network that implemented a problem
instance of quadratic integer programming. Computer
simulation showed that the sample network can con-
verge to its minimum energy state, which represents

the correct solution to the problem. Our results show
that multiple-valued Hopfield network LSIs can be fab-
ricated by using single-electron circuits.

(This work was supported by a Grant-in-Aid for Sci-
entific Research on Priority Areas “Single-electron de-
vices” from the Ministry of Education, Science, Sports,
and Culture and by CREST of JST (Japan Science and
Technology).)
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Appendix A

Strictly speaking, it is not possible to be certain, in the
Hopfield network, that convergence to the global min-
imum can always be obtained. This is because many
local minima can exist in the function of the network
state. To avoid the network becoming stuck in the local
minima, several sophisticated techniques are employed
in operating the network, but we will not discuss them
here.

Appendix B

In constructing the network consisting of single-electron
neuron circuits and CMOS connection-weight circuits,
it is essential to design the CMOS circuits so that their
input capacitances will be sufficiently small. This is
because the single-electron neuron circuit cannot drive
a load of large capacitance. The neuron circuit given
in Fig. 5 in the text, for example, produces the desired
staircase function (Fig. 6) only when its load capaci-
tance (denoted by C5 in Fig. 5) is set at 150 aF; there-
fore the neuron circuit cannot drive a CMOS circuit
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Fig.A· 1 A sample structure for the CMOS connection unit.

whose input capacitance is larger than 150 aF. It is
therefore indispensable for LSI implementation of the
network to develop CMOS connection-weight circuits
with small input capacitances.

We here propose, in Fig.A· 1, a candidate struc-
ture for the CMOS connection unit. It consists of in-
put buffers, a resistor array for weight connections, and
output buffers. The input buffers receive voltage inputs
xi from single-electron neuron circuits and produce in-
verted outputs −xi and noninverted outputs xi. From
these outputs, the resistor array produces weighted-
sum current signals Ii, using the technique of Kirchhoff
current summation; the inverted and the noninverted
outputs are used for positive- and negative-weight con-
nections respectively. The output buffers convert cur-
rent signals Ii into weighted-sum voltage outputs si,
which are fed back to the neuron circuits.

The input buffer accepts input signal xi with a
source follower consisting of n-channel MOS transistor
M1 and current source I0. Then it produces output xi

by using a voltage follower combined with level-shifting
transistor M2 biased by I0 (identical transistors are
used forM1 andM2). Inverted output−xi is produced
by the use of a polarity inverter.

The input capacitance of this connection unit is
equal to gate-drain capacitance Cgd of M1. It has been
predicted that the gate-drain capacitance of a MOS
transistor can be reduced to tens of attofarads by re-
ducing the device dimensions to 0.1 µm or less. By
using such a minute MOS transistor as M1 (and M2),
we will be able to construct the connection unit with
an ultrasmall input capacitance.
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