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A protocomputational architecture is presented that implements the ancient reaction-diffusion model as a microelectronic
hardware. A digital medium is selected for the physical mapping of the protoarchitecture as a way to benefit from reliable advanced
integrated circuits fabrication technologies. The extraction of dense motion vector fields from textureless objects in a video
sequence is selected as a realistic application. Real-time video processing results at 30 fps are achieved using an FPGA physical
implementation of the proposed protoarchitecture.

1. Introduction

Modern von Neumann architecture based processors sys-
tematically carry over extensive processing tasks governed
by the consecutive execution of individual instructions that
implement algorithms. The fact is widely accepted that these
architectures are suitable to efficiently process a massive
amount of simple algebraic operations with limited memory
exchange, while their efficiency dramatically decreases at
processing tasks that are natural and quick to mammals
such as face and object recognition, feature, and saliency
extraction. Artificial neural networks [1] and, more recently,
machine learning models and algorithms have emerged in
response to solving such conceptually complex problems, for
example, [2].

Nevertheless, computation has existed in nature prior
to the existence of any physical support to engineered and
human computing, for example, mathematical structured
thinking, geometrical support to calculations, and mechan-
ical and electronic computing systems. The operation and
behavior of neurons, the topology of neural networks, and
more generally operations of the brain have been a source
of inspiration yielding disciplines including computational

neuroscience, neuromorphic computing, and engineering
[3]. Protocomputing is emerging as a novel research dis-
cipline accepting two fundamental research hypotheses;
namely, (a) computing is not limited to excitable tissues and
mammals and is also processed by simple organisms aswell as
liquids andmaterials in the form of biochemical and physical
processes and reactions often forming nonlinear dynamical
systems with complex behavior and (b) the very fundamental
nature of this processing may hold its properties from the
origin of life and of the universe.

Still in its infancy, the protocomputing discipline is
mostly addressed at the level of theoretical developments,
modeling, and algorithmic studies [4]. Decision-solving
methodologies and algorithms have been presented to effi-
ciently solve complex optimization problems exploiting spe-
cific feature of physical phenomena [5]. Wet-laboratory
experiments lend themselves particularly well to an experi-
mental perspective, specifically considering the chemical and
biology related approaches.The sophisticated spatiotemporal
oscillatory dynamics developed by the primitive single-cell
amoeba in solving complex environmental adaptation is
used as an inspiration to solving NP-hard problems [6].
The usage of slime mould to constructing various sensing
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and computational building blocks is discussed in detail in
[7]. One research direction in synthetic biology consists of
ancestral sequence reconstruction to gain understanding in
mechanisms of life and its origins [8]. Photonic medium
is applied to experimentally solving the multiarmed bandit
problem exploiting the ultrafast chaotic oscillatory dynamics
of lasers [9]. Astronomy and bioastronomy also seek to
understand computing of the origin of life.

From an electronic viewpoint, protocomputation may
be considered from a classical device-level perspective, that
is, as a discipline aiming at performing unconventional
computation from benefiting of specific electrical charac-
teristics of novel, post-CMOS devices and thus positioning
itself in overlap to advanced switching devices research and
material science, for example, single-electron transistors,
graphene and quantum devices, and molecular electronics.
In general, exploiting such devices requires their circuit-
level hybrid usage with CMOS technology. Hence, classical
analog MOSFET design is used to amplify excessively low
current levels and create functionality that can successfully
be interfaced to other circuits and to the outside world.

The majority of the demonstrated protocomputing
device-level experiments may be considered as proof-of-
concept aiming at understanding the operation and charac-
teristics of the computingmedia. Prototypes supporting real-
world experiments face scaling issues relating to dynamically
controlling and adapting the computing media. In this work,
we propose exploiting the stable and well-understood digital
technology as the computing media. The protocomputing
system is implemented as a protoarchitecture that is mapped
into the digital media. The proposed protocomputing system
consists of a reaction-diffusion process that is observed in
fundamental chemical and biological condition develop-
ments. A cellular automata is used as the method of imple-
menting the algorithm [10, 11], which is mapped into a digital
protoarchitecture. As a merit of the proposed approach, a
real application example of video processing is demonstrated
in real-time. Abnormal behavior, saliency detection, and
attention attraction are part of the reflex cognitive processing
of mammals. Motion detection is a prerequisite to these
tasks. Motion detection under conditions where the moving
object has no texture is used as the application exploiting the
protocomputation architecture to achieve real-time.

Section 2.1 details the problem and the selected cellular
automata implementation of the reaction-diffusion algo-
rithm. The original RD algorithm is adapted to support
its flexible parallel operation as a solution to enable real-
time operation over a wide range or size of the input space.
Sections 2.2–2.4 present the fundamental protoarchitecture
and its implementation into a digital computation medium.
The control of the architecture and its real-time scheduling
are presented. Section 3.1 presents implementation results
and demonstrates the real-time capability of the proposed
protoarchitecture over a real-world application. Finally, a
methodology that enables scaling the input space (input
image size) and that dictates the correct level of parallelism
to reach real-time operation is presented in Section 3.2.
Section 4 presents the conclusions.

2. Materials and Methods

In the following, a method based on the ancestral reaction-
diffusion algorithm is proposed to a real-life video example
consisting of creating texture into textureless objects to the
aim of enabling the real-time motion vector extraction.
A fundamental condition to achieving real-time operation
consists in the specific development of a protoarchitecture
and its mapping into a digital medium.

Initially developed within the context of video compres-
sion techniques [12], motion vector estimation has found
new application fields with the advent of modern ubiquitous
consumer electronic products and smart vision sensors, with
examples including target tracking [13], hand gesture user
interface [14], image stabilization [15], surveillance, event
analysis and automatic anomaly detection from monitoring
cameras, depth map estimation, and 3D vision, which reveal
a dynamic research activity over the recent years [16].
Classical motion vector extraction algorithms using block
matching [17] are known to deliver accurate results in highly
textured regions of images, while they perform poorly in
low textured regions. The recent usage of block matching
in smart machine-vision applications poses increased con-
straints on the necessity of a correct motion vector field
extraction in real-time.The generated field of motion vectors
is used in further algorithmic processing and thus must
satisfy severe criteria in terms of spatial homogeneity [18].
For example, postprocessing tasks such as classification may
require an accurate density of the motion vector field in
order to decrease their error rate. Edges tracking and particle
filters have been proposed as a solution to detect and track
textureless objects, resulting in computationally complex
algorithms, for example, [19], hence with limited practical
usage in energy-constrained portable systems.

2.1. Cellular-Automaton Generating Spatial Patterns Aim-
ing at the Motion Vector Estimation of Textureless Objects.
Reaction-diffusion (RD) algorithms have initially been intro-
duced to model the concentration dynamics of different
chemical species placed in presence of each other within a
single container [20]. Diffusion processes represent a fun-
damental natural phenomena underlying the macroscopic
effect observed as a result of numerous irregular microscopic
motion of individual particles that spread out as a result of
the motion of each. The particles may consist of chemicals,
cell or bacteria, or even larger species (animals) [21]. Reaction
describes the conversion of one involved particle species into
another, as a result of the diffusion of two or more substan-
ces.

In its original expression, the RD model is defined over a
continuous spatial domain. The dynamics of RD considering
the activators and inhibitors over independent spatial fields
is adapted following the procedure that is presented in [22].
Diffusion of activators and inhibitors on 1D space is described
by the following diffusion equation:

𝜕𝑢 (𝑥, 𝑡)
𝜕𝑡 = 𝐷

𝜕2𝑢 (𝑥, 𝑡)
𝜕𝑥2 , (1)
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where 𝐷 represents the diffusion coefficient of the activators
or inhibitors,𝑥 the space, and𝑢(𝑥, 𝑡) the spatial concentration
at time 𝑡. The general solution is given by

𝑢 (𝑥, 𝑡, 𝑛) = 12√𝜋𝐷𝑡 ∫
∞

−∞
𝑢𝑛 (𝑋) 𝑒−(𝑥−𝑋

2)/4𝐷𝑡𝑑𝑋, (2)

where 𝑢𝑛(𝑥) represents the initial concentration at 𝑡 = 0
and 𝑛 represents the cycle index, further used in (4) to (6).
In [22], two independent diffusion equations for activators
and inhibitorswere introduced, where (i) diffusion coefficient
of inhibitors 𝐷V was set at much larger value than that of
activators 𝐷𝑢 and (ii) the same initial concentrations were
set to the two diffusion equations. Here we introduce a novel
method that uses one diffusion equation only to describe
the original model equations. First, diffusion of activators is
performed during time 𝑇𝑢 with initial concentration 𝑢0(𝑥),
and the result is obtained as 𝑢(𝑥, 𝑇𝑢, 0). Then the diffusion
is further continued for additional time 𝑇V, and the result
is described by 𝑢(𝑥, 𝑇𝑢 + 𝑇V, 0). It should be noticed that
𝑢(𝑥, 𝑇𝑢, 0) and𝑢(𝑥, 𝑇𝑢+𝑇V, 0) represent results of diffusions of
activators and inhibitors, respectively, because 𝑢(𝑥, 𝑇𝑢+𝑇V, 0)
is obtained by diffusion of 𝑢(𝑥, 𝑇𝑢, 0) during 𝑇V, which is
equivalent to the two-diffusion-equation system under the
same initial concentration with 𝐷V > 𝐷𝑢. Second, as in
[22], differential concentration of activators and inhibitors is
amplified by the sigmoid function and is set to the subsequent
initial condition 𝑢1(𝑥) as
𝑢1 (𝑥) = 𝑓 (𝑢 (𝑥, 𝑇𝑢, 0) − 𝑢 (𝑥, 𝑇𝑢 + 𝑇V, 0) − 𝑐) ,
𝑓 (𝑥) = 11 + 𝑒−𝛽𝑥 ,

(3)

where 𝛽 represents the gain of the sigmoid function and 𝑐
represents the offset value introduced in [22]. When 𝑇𝑢 ≈0 ≪ 𝑇V, 𝑢(𝑥, 𝑇𝑢, 0) ≈ 𝑢0(𝑥), and hence, by assuming 𝑐 = 0
and redefining 𝑇V as 𝑇, (3) is simplified as

𝑢1 (𝑥) = 𝑓 (𝑢0 (𝑥) − 𝑢 (𝑥, 𝑇, 0)) . (4)

By using 𝑢1(𝑥), subsequent 𝑢2(𝑥) is obtained by

𝑢2 (𝑥) = 𝑓 (𝑢1 (𝑥) − 𝑢 (𝑥, 𝑇, 1)) , (5)

and the generalized update equation is

𝑢𝑛+1 (𝑥) = 𝑓 (𝑢𝑛 (𝑥) − 𝑢 (𝑥, 𝑇, 𝑛)) . (6)

Under specific parameters sets, the discrete version of
RD algorithms generates repeatable, stable spatial patterns
[23, 24] consisting of stripes or spots froman initial image and
applying an iterative processing. Henceforth, this property
is used to create texture in a video scene and in particular
into texturelessmoving objects. Assuming that the interframe
movement is sufficiently small, then the texture follows the
movement of the textureless object, enabling the detection of
the movement of texture, rather than object edges only, as a
limitation of classical algorithms. An algorithm that imple-
ments the aforementioned principles has been presented in
[25]. The RD process is defined in its fundamental form

over a continuous spatial domain. Following the procedure
described in [22], the dynamics of the RD process is adapted
to support the diffusion of activators and inhibitor in inde-
pendent discrete fields, which are eventually convoluted into
a 2D array of cells.

Two-dimensional RD over images and video sequences
is applied from a combination of one-dimensional process-
ing, following the procedure presented in [25] and which
delivers patterns that are stable, even in a noisy environment.
The theoretical approaches governing the derivation of the
reaction-diffusion equation in a continuous time and spatial
domains aremodified to support the circuit-level approach as
expressed in

𝑎𝑖 (𝑡 + 1) = 𝑎𝑖−1 (𝑡) + 2𝑎𝑖 (𝑡) + 𝑎𝑖+1 (𝑡)4 , (7)

where 𝑎 is a natural number representing the pixel intensity,
𝑖 indexes the pixel in the row of an image, and 𝑡 represents
the number of diffusion processes, or diffusion steps. A
discrete update consists of a number of diffusion steps
iteratively applied from the initial row of pixel intensities.The
subsequent reaction consists of subtraction and amplification
by a nonlinear logistic function. Several updates are required
to generate stable patterns.

This study extends the earlier theoretical study to the
implementation of the reaction-diffusion pattern generation
algorithms as a protoarchitecture that is mapped into a digital
medium.Afield-programmable gate array (FPGA) is selected
for the physical implementation enabling real-time operation
of the protocomputation based application.

2.2. One-Dimensional Reaction-Diffusion Protoarchitecture
Aiming at a Digital Media Implementation. A data-flow and
a block diagram representing the one-dimensional pattern
generation process are shown in Figure 1. The ideal example
of a step input is presented in Figure 1(a), which is processed
by the system until reaching a stable state after update
number 10 as a spatial wave (one-dimensional pattern). The
progress of the step input along the first update is shown,
evidencing the edge smoothing obtained by the diffusion,
the subtraction of the diffused state from the input step, and
the result of nonlinear amplification. The state-diagram of
the RD system is presented in Figure 1(b), showing the two
fundamental states, namely, diffusion and reaction consisting
of subtraction and amplification, as well as the iterative
data passing process that is required and represented as
arrows. The state-diagram of the system including the filter
is presented in Figure 1(c), where the lower part of the state-
diagram represents the RD process that is followed most of
the time, and the upper part of the state-diagram represents
the Filtering process that is followed repeatedly. Recognizing
that the Filtering process consists of a regular diffusion step,
the integrated state-diagram of Figure 1(d) can be derived,
which evidences the possible use of identical resources for
diffusion and filtering. Controlling and canceling collision
of spatial waves is obtained by the action of the spatial
Filtering process that is applied after the first update, and
then repeatedly after a fixed number of updates, for example,
Figure 1(a), in the Filter process (red box). The filter consists
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Figure 1: One-dimensional pattern generation concept. (a) Data-flow diagram showing a step input to the Update and Filter processes and
the corresponding sequential signal processing, resulting into a stable spacial intensity wave (1D pattern). (b) State-diagram showing the
Update process, and (c) state-diagram showing the Update and Filtering processes and evidencing the iterative operation. (d) Integrated
state-diagram, evidencing that the filtering is executed as one diffusion process.
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Figure 2: Protoarchitecture of the one-dimensional RD module.

of one step of diffusion (blurring), which is not followed
by the reaction process (subtraction and amplification). In
addition, the spatial filter controls potential effects of noise
which is diffused such that its effect is not amplified, resulting
into damping out its propagation. In practical terms, the
filtering repetition frequency, the number of diffusion steps,
and the maximal gain of the sigmoid function factors are
determined empirically; for example, in our application case,

one diffusion filtering step is applied every four updates while
the gain of the sigmoid function is equal to five.

The protoarchitecture of the one-dimensional processing
module is derived from [26] and consists of four major sub-
modules presented in Figure 2.The first diffusion submodule
is in charge of the calculation of diffusion according to (7).
The second reaction submodule processes the subtraction
and amplification required to complete one update. Finally,
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two line buffers implemented as first-in-first-out (FIFO)
memory segments FIFO-A and FIFO-B temporarily store
one row or column, and one processed row or column,
respectively. Data is transferred and processed as a word, and
thus all operators and transfer lines process or store and,
respectively, carry words, which is not drawn to increase
visibility of the figure; 12-bit words are used in the specific
developed application further detailed.The entire protoarchi-
tecture operates in streaming mode, where data is constantly
being processed from consecutive memory locations. Hence
memory management is reduced to global read/write oper-
ation control, and no address needs to be generated for the
internal process.

The input is streamed from a CMOS sensor or a tempo-
rary input frame buffer. In both cases, the control of addresses
is limited to a row-by-row scanning scheme, which is part
of any CMOS imager, while it consists of a simple counter,
when the frame buffer memory is used. An input multiplexer
serves as a source selection device. The RD process starts
with the acquisition of one line (row or column) of a frame
in a video sequence that is serially streamed to the input
terminal as consecutive words representing the pixel intensity
of neighboring, consecutive pixels. The input multiplexer is
set to select which input to pass, which is delivered to the
diffusion submodule, while it is also stored into FIFO-A in
the first step of diffusion. FIFO-A has the capacity to store an
entire row or column and is deactivated upon completion of
storing.

In parallel to delivering to FIFO-A, consecutive pixels are
also delivered to the diffusion block. A delay line formed
of three clocked D flip-flop (D-FF) banks accepts incoming
pixels, such that they store three neighboring pixels in a row
after three clock cycles. Hence, the D-FF bank located in the
middle position stores pixel 𝑎𝑖, the D-FF bank located on the
rightmost part of the chain stores pixel 𝑎𝑖−1, and the D-FF
bank located on the leftmost part of the chain stores pixel 𝑎𝑖+1.
This situation is suitable to execute the diffusion computation
of pixel 𝑎𝑖 according to (7).The three pixel intensity values are
routed through multiplexers to the four inputs of an adder.
Eventually, the adder output is shifted to the right two times
which implements the operation of division by four. This
process is repeated at each clock cycle, thus in a streaming
mode, and the diffusion of the new consecutive central
pixels 𝑎𝑖 is computed. Each new computed diffusion value
is routed to FIFO-B by a multiplexer. Hence, at completion
of the diffusion, one line (row or column) resulting from
one diffusion step is stored in FIFO-B. The two multiplexers
located at the input of the adder may be reconfigured to
properly handle limit conditions that occur at the boundary
of the image; in general, constant boundary conditions are
admitted, where the limit value, for example, a pixel in row
0 or column 0, is used two times in replacement of values
of 𝑎𝑖−1 and 𝑎𝑖 that do not exist, because they are outside
of the physical array. The central pixel 𝑎𝑖 always connects
to two of the four-input adders, for example, to realize the
multiplication coefficient equal to two.

A new step of diffusion can be started immediately
after completion of a previous step. The input multiplexer is
set to route FIFO-B into the diffusion submodule, and the

process described above repeats. During this new step, no
imager input is provided, and FIFO-A is deactivated, storing
the initial nonprocessed frame. Several steps of diffusion
may be processed this way, each implementing one iteration
of inhibitor diffusion expressed as 𝑢(𝑥, 𝑇, 𝑛) in (6); their
numerical count implements parameter 𝑇.

The reaction operation starts while the last step of diffu-
sion is streamed through the diffusion submodule. The reac-
tion submodule (subtraction and amplification) and FIFO-
A are activated as soon as diffusion of the first diffused pixel
is completed, that is, delivered at the output of the diffusion
submodule.The first diffused pixel is subtracted from the first
pixel stored in FIFO-A that pertains to the original nondif-
fused line. The result of subtraction is delivered to the final
processing consisting of a sigmoid operation implementing
the following function, 𝜁𝑎(𝑥) = (tanh(𝑎𝑥/2) + 1)/2. Function𝜁𝑎(𝑥) and its parameters are tailored to the application by
precomputation of the values. The function is implemented
as a lookup table (LUT) storing the precomputed values
and enabling fast and accurate result delivery. The rightmost
multiplexer routes RD data from the output of the reaction
submodule into FIFO-B. At the conclusion of the reaction
computation, one update is completed.

Subsequent updates indexed 𝑛 + 1 in (6) are performed
until a stable row pattern is generated, yielding 𝑢𝑛+1(𝑥). No
input is delivered from the image sensor or input frame
buffer, and the input data originates from FIFO-B. Hence, a
new update starts with delivering the data content of FIFO-
B to the diffusion submodule and FIFO-A, in parallel, and
proceeds following the procedure described above.

As determined from the algorithmic study, some Filtering
process is periodically required and is interleaved between
two updates.The Filtering process consists of a diffusion step,
that is, without reaction. Consequently, the filtering operation
is applied strictly using the diffusion submodule, while the
reaction and FIFO-A submodules are deactivated.

At completion of the full RD computation of one line,
results are delivered to the output. Subsequently, the entire
RD process repeats, using the next line until all rows
and columns have been individually processed by the one-
dimensional module. At this point, the one-dimensional RD
process of one frame is completed. Processed data is delivered
for two-dimensional aggregation, and a new frame can be
processed by the one-dimensional RD module.

2.3. Two-Dimensional Reaction-Diffusion Protosystem. Two-
dimensional RD is applied to acquired images as the appli-
cation of the one-dimensional RD process to every row
and column, individually, as depicted in Figure 3(a). The
hardware used to process each row or column is identical
and consists of the circuit earlier presented in Figure 2.
Nevertheless, a sequential processing of rows and columns
would not yield real-time operation. As a benefit of the
independent handling of row and columns, the process can
be accelerated by parallel processing. Two columns and two
rows are concomitantly processed in a one-dimensional RD
computation. The subsequent two-dimensional aggregation
consists of a multiplication of the row and column intensity
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Figure 3: Protoarchitecture and operation of the two-dimensional RD system. (a) Independent row and column processing in a one-
dimensional algorithm. (b) Block-level system protoarchitecture. (c) Detailed timing chart.

values of a pixel obtained from the RD individual processing
of rows and columns.

The two-dimensional real-time RD processing protoar-
chitecture is presented in Figure 3(b). RD, WR, and PR,
respectively, denote read, write, and processing operations.
Data streaming to the system input originates from an image
sensor, in real-time, while the output is to be delivered to
further processing units, for example, extracting the motion
vectors by operating block matching in consecutive resulting
RD frames and further exploiting this result.The architecture
comprises two parallel data paths, each processing two rows
and two columns, respectively, in parallel. Two input frame
buffers store images of identical horizontal and vertical
resolution, for example, 120 × 120 pixels or 250 × 250
pixels.The two images are processed by four one-dimensional
RD modules, and the results are stored into two output
frame buffers. The signals that control the four subpaths are
identical which significantly simplifies the controller. In order
to achieve this feature, the image that is stored into input

framebuffer (𝑦) is a rotated andmirrored version of the image
stored in input frame buffer (𝑥). This storage organization
is achieved by appropriate address generation at memory
writing.Hence, in readmode and using identical frame buffer
addresses, input frame buffer (𝑥) delivers two consecutive
rows while input frame buffer (𝑦) delivers two consecutive
columns. Finally, a multiplier aggregates the row and column
data obtained for every pixel from output frame buffers (𝑥)
and (𝑦) and delivers the RD image to further processing.

The detailed timing chart of the system is summarized
in Figure 3(c). Here, frame buffer write operations are
marked in blue, read operation is marked in green, and
RD module processing is marked in black. The change of
a read/write/process mode is written over the first involved
data, while the vertical wavy line depicts data that is not
displayed to improve visibility. Only the timing chart of the
upper data path handling two rows is shown, for the sake
of clarity. The timing chart of the lower data path handling
two columns can be obtained by replicating the timings of the
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Table 1: FPGA synthesis results of the core system.

Characteristic 120 × 120 250 × 250 Characteristic 120 × 120 250 × 250
Total logic elements 499 2,221 Total registers 656 3,029
Total memory bits 745,472 3,203,072 → Usage rate 13% 57%
RAM blocks (⋅/553) 92 396 DSP blocksa 1 15
Total RD modules 4 20b Max. frequency 69.12 66.9
(Horizontal, vertical) 2, 2 10, 10 (𝐹max)MHz
Processing fps at 𝐹max 34.43 38.89 Processing fps at 50MHz 24.91 29.06
aMultiplier used in the RD module. bOperation is pipelined in order to restrain FPGA BRAM utilization.

upper data path, while changing 𝑥 into 𝑦 when input frame
buffer (𝑦) is in read model. Here ⟨𝑥 : 𝑛⟩ denotes row 𝑛 of the
frame, and ⟨𝑦 : 𝑛⟩ denotes column 𝑛.

Hence, two-dimensional frame processing for texture
generation is performed by providing the one-dimensional
RD module with data organized in a two-dimensional array
following a time-division scheme, which reduces the com-
plexity of the circuit and system as a whole, while the parallel
operation accelerates the global processing to reach to real-
time operation.

2.4. Hardware Implementation and Target Platform. The
protoarchitecture of the RD system is implemented in a
hardware platform with FPGA for real-time processing. A
Terasic DE10 Standard board embedding a Cyclone V FPGA
and equipped with a TRDB-D5M, 5M pixel CMOS sensor
image acquisition peripheral board are used. Data is acquired
from the image sensor in 8-bit RGB format. Results are
displayed using an external display screen connected through
a VGA link. The board operation frequency is 50MHz while
the core circuits could operate up to 𝐹max (Table 1), and the
image acquisition rate is programmable up to 70 fps (frames
per second).

The operational characteristics and synthesis results per-
taining to the core of the system that embeds the 1Dmodule of
Figure 2 are presented inTable 1.The entire core is considered,
specifically including input frame buffers supporting the
120 × 120 and 250 × 250 window processing. In this latter
case, the level of 1D module parallelism is increased from 4
to 20 and pipelining is applied as a way to limit FPGA block-
RAM usage at constant input frame buffer bit size. However,
service circuits such as the camera interface are deliberately
not included into the synthesis results.

3. Results and Discussion

The operation of the entire two-dimensional RD system
protoarchitecture is confirmed using numerical simulation
and seminatural images. Consecutive video images of size
120 × 120 pixels are created from a natural background
that is covered by a textureless moving object. Though
the resulting image appears synthetic to human eyes, the
recreated scheme in fact conforms an expected real condition,
where an object that appears without texture moves into a
scene. The vanishing of texture could be resulting from local
saturation of imager pixels due to a high-intensity reflection

in the scene, for example, white object moving under high
illumination, or insufficient gain of the imager, potentially
resulting froman image sensor self-adjusting its gain to a high
dynamic range environment.

Figure 4 presents numerical simulations of the aforemen-
tioned situation. AVerilog RTLmodel of the hardware is used
to process shown data. In order to obtain visually meaningful
evidence, ten frames separate the original input shown in
Figure 4(a) with respect to Figure 4(b); the movement of
the original object is clearly perceptible. The motion vectors
extracted using the conventional block-matching technique
are compared to the result of the RD-based proposed tech-
nique. The results are presented in Figure 4, where (a) and
(c) pertain to the same image, and (b) and (d) pertain to
another same image. The motion vectors obtained from a
conventional block-matching algorithm are shown in red
in (a) and (b), clearly evidencing that motion can only
be detected at the edges perpendicular to the motion. In
contrast, (c) and (d) show the vector field obtained using
the proposed technique and hardware that is simulated using
an RTL model, where a dense array of red motion vectors
is detected inside the object, along edges of the generated
patterns that have followed the textureless object movement.

3.1. Real-TimeHardware Protosystem. Thehardware platform
presented in Section 2.4 is used to generate real-time results
of RD pattern generation in naturalmovies acquired from the
camera, in order to further generate motion vector fields.The
image field is limited to 250×250 pixels by hardware physical
resources. Results are presented in Figure 5 confirming the
correct operation of the protosystem.

A real indoor environmental situation is used to confirm
the capacity of the algorithm and hardware implementation
that consists of a single dark object of rectangular shape
moving in front of a text background. The processed frame
size is equal to 120 × 120 pixels, and the object movement
has been made sufficiently significant, for example, to create
qualitatively visible results. The background may be acquired
and processed slightly blurred due to the limited depth of field
of the unsophisticated optical lens system that is used. Images
are extracted from the acquired and processed video flow
and shown in Figure 5. The dynamic range of images is com-
pressed to 3 bits prior to processing, which can be achieved in
hardware by straightforward wire connecting. Hence, images
may appear dark to human observers. The motion vector
field that is obtained from software block matching of RD
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(a) (b)

(c) (d)

Figure 4: Simulations of an objectmovement corresponding to one pixel and subsequent detection ofmotion vectors depicted in red. ((a) and
(b)) Motion vector results using a conventional block-matching algorithm; ((c) and (d)) corresponding results using the proposed RD-based
method and hardware.

(a) (b)

(c)

(d)

Figure 5: Real-time extraction of RD patterns of a textureless object moving over a text background and subsequent estimation of the
corresponding motion vector field. (a) First acquired frame and corresponding RD pattern; (b) second acquired frame and corresponding
RD pattern. (c) Close-up of the RD pattern obtained from the second acquired frame with overlaid motion vectors and (d) close-up of the
second acquired frame with overlaid motion vectors that are acquired using a conventional block-matching algorithm.
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Figure 6: Real-time experimental setup. The processed window is superposed to the full VGA background. The unprocessed and processed
window are enlarged in the inlets.

frames is presented in Figure 5(c). The generation of a dense
field of motion vectors that appear in red color inside the
moving textureless object is confirmed. Some unexpected
motion vectors appear outside the area of the moving object.
Those which appear in regions previously covered by parts
of the moving object are incorrect, though expected; they
confirm the necessity to satisfy the hypothesis of a slow
moving object or high acquisition speed. The system is very
sensitive to any movement, but also to luminance changes
within the scene, as a benefit of the iterative RD process
that includes a high amplification nonlinear process. Hence,
some vectors may be generated within the scene that do not
correspond to a movement, but correspond to a parasitic
change of luminance. These vectors are incorrect, but very
few. A different set of parameters of the algorithms may fix
these incorrectly determined movement vectors, however,
to the cost of a decrease in the proportion of the correctly
detected vectors. Consequently, as a real-time system, a trade-
off between the speed of operation (number of iterations)
and the performance metrics that characterize the system
must be found. As in any sensor and detection system,
these performancemetrics are defined from true positive and
negative, false positive and negative detections, with respect
to the total set of expected vectors. These metrics must be
extracted from empirical experiments carried over multiple
sets of data, that is, various videos acquired with different
conditions, for example, image size, motion distance, and
illumination. This systematic study is beyond the scope of
this paper. In addition, conforming to the theory of reaction-
diffusion systems, the proposed system is observed to operate
in optimal conditions consisting of a high contrast of intensity
between the object and its background, and in presence of a
highly textured background where existing features promote
local and global fixing of the RD patterns. Finally, the motion
vector field obtained using classical block matching only
generates vectors at the edges, or underneath zones that were
covered by the object in the previous frame. Consequently,

the number of vectors that appear in Figure 5(d) is expected to
significantly reduce with a smaller movement of the texture-
less object. In contrast, the proposed technique results should
improve with low amplitude of the movement, where the
number of incorrect vectors should decrease, while correct
vectors should remain stable.

The real-time experimental setup is presented in Figure 6.
The optimized parallel implementation of the protosystem
enables real-time operation in a window of 250 × 250 pixels.
The enlarged view shows the patterns generated inside the
cup that is rendered textureless due to its color and a high-
intensity illumination of the scene. The window size of 250 ×
250 pixels does not represent any limitation of the method or
protoarchitecture but relates to the memory capacity of the
FPGA.Hence, window size with respect to hardware resource
scaling is a major concern that is discussed in the following.

3.2. Real-Time Hardware Scaling of the Protoarchitecture. The
computational capacity of protocomputational systems is
dictated by the nature of the supportingmedium, as well as its
physical extent. The concept of real-time operation as such is
absent in natural computation. In contrast, the emulation of a
natural phenomenon over a substrate of a different type poses
issues of accuracy with respect to reflecting natural timings.
This issue is well understood in computer science and has
been addressed from the concept of real-time that stipulates
the time elapsed to compute the simulatedmodel conforming
to the time required by the real environment. It is common for
emulating systems including microelectronic and computer
systems to take benefit of virtual, parallel, or redundant
implementations that compute in parallel and support the
real-time capability. Within this context, scaling the extent
of the protocomputation system has little or no meaning
with respect to a natural system. However, considering the
selected video application, and the parallelization concept
discussed above, scaling appears a relevant hardware issue
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Figure 7: Window size and hardware resource scaling (log-log
scale).

that is fully supported by the proposed protoarchitecture, and
is discussed in the following.

The size of the image that is acquired is generally dictated
by application or image sensors standards. The hardware
implementing the RD algorithm should adapt, for example,
to cover the entire image. Considering real-time operation
a compulsory specification results into the stringent need
to allocate additional hardware resources enabling scaling
processing to large image sizes.

System scaling may be supported taking three possible
protoarchitectural adaptations into account. The BRAM-
parallel protoarchitecture (BPA) consists of increasing the
number of pixels in each row while also increasing the level
of parallelism to keep 30 fps, that is, the number of parallel
data paths (1D modules) in Figure 3. Eventually, an image
may form one single window. A different level of paral-
lelism should be selected pertaining to the number of units
processing the rows and the columns in parallel, in order
to accommodate rectangular image formats. The module-
parallel protoarchitecture (MPA) dictates parallelizing BPA
blocks of small size. Some overlap between neighboring
small-size windows may be used to guarantee coherency of
the generatedmotion vectors.The fixed boundary conditions
of the RD process dictate this overlap, whose size depends on
theRDparameters. Finally, a hybrid of the BPAandMPAmay
be considered.

The decision criterion regarding the suitable scaled pro-
toarchitecture is based on the analysis of the hardware
resources that are theoretically required in a first-order con-
sideration of the window size, as presented in Figure 7. The
theoretical analysis (blue trace) dictates a linear relationship
between window size and hardware resources. The BPA and
MPA architectures are equivalent at the location of this
theoretical curve. In practical terms, however, second-order
effects must be considered, consisting of the necessity to
adapt RD parameters to the size of the window, potentially
to the application. For example, the number of RD updates
that must be applied to obtain stable patterns may vary with
respect to the window size, which eventually reflects into
hardware resources allocation. Hence, a decrease of some key

parameters may result in a real curve proportionally lower
than theoretically predicted and potentially a tendency to
saturate (red).The BPA architecture is preferable under these
conditions, which takes full benefit of the hardware resource
scaling. In contrast, an increase of some key parameters may
result in a real curve proportionally higher than theoretically
predicted and potentially a tendency to an exponential
behavior (green). The MPA architecture is preferable under
these conditions, which restrains the hardware scaling to a
strict theoretical behavior.

4. Conclusions

This paper demonstrates the correctness of an approach
consisting of using a digital physical medium to the purpose
of implementing the reaction-diffusion algorithm. A dedi-
cated protoarchitecture is developed, which is subsequently
mapped into the implementation media. Real-time opera-
tion of a realistic video processing application is demon-
strated using the proposed method and protoarchitecture,
whereas classical algorithms are known to fail. Specifically,
the reaction-diffusion is applied to textureless objectsmoving
into a video frame acquired at 30 fps in order to create texture
allowing the generation of dense fields of motion vectors
in real-time. Simulations and real operation results using
windows of sizes up to 250×250 pixels confirm the suitability
of the algorithm, the protocomputing architecture, and its
hardware implementation.A scalingmethod is presented that
supports real-time operation.
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