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SUMMARY Edge computing, which has been gaining attention in re-
cent years, has many advantages, such as reducing the load on the cloud, not
being affected by the communication environment, and providing excellent
security. Therefore, many researchers have attempted to implement neural
networks, which are representative of machine learning in edge computing.
Neural networks can be divided into inference and learning parts; however,
there has been little research on implementing the learning component in
edge computing in contrast to the inference part. This is because learning
requires more memory and computation than inference, easily exceeding
the limit of resources available for edge computing. To overcome this prob-
lem, this research focuses on the optimizer, which is the heart of learning.
In this paper, we introduce our new optimizer, hardware-oriented logarith-
mic momentum estimation (Holmes), which incorporates new perspectives
not found in existing optimizers in terms of characteristics and strengths of
hardware. The performance of Holmes was evaluated by comparing it with
other optimizers with respect to learning progress and convergence speed.
Important aspects of hardware implementation, such as memory and oper-
ation requirements are also discussed. The results show that Holmes is a
good match for edge computing with relatively low resource requirements
and fast learning convergence. Holmes will help create an era in which
advanced machine learning can be realized on edge computing.
key words: optimizer, edge computing, neural network, nonvolatile mem-
ory, quantization

1. Introduction

Edge computing, which has gained recognition in recent
years, is a technology that completes information process-
ing immediately without the need to connect to a powerful
server computer through a network [1]. This has several ad-
vantages, including being unaffected by the network envi-
ronment in which it is used and reducing the load on the
cloud, which significantly increases every year. Edge com-
puting is also an excellent option in terms of security be-
cause it prevents leakage of confidential information.

By contrast, edge computing has a weakness in that
the available resources are limited. To overcome this weak-
ness, many researchers have focused on nonvolatile mem-
ory [2], [21]. Nonvolatile memory performs well with low
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power consumption as it does not require electricity, ex-
cept when in use, which helps implement the “inference part
of the neural network” in edge computing. However, non-
volatile memory has the disadvantage of consuming a large
amount of power during memory access. This makes it in-
compatible with operations that require repeated data writes,
such as neural network training. Recently, research has been
conducted on hardware for the “learning part”, in contrast
with the “inference part” [3]–[9]. In addition, recent stud-
ies on the learning have struggled to achieve high perfor-
mance and low power consumption, and many limitations
remain [5]–[9]. For example, Kaneko et al. included hard-
ware perspectives, such as “quantization bit limit,” “low re-
source,” and “power consumption reduction” when design-
ing neural networks by using edge computing [1]. Kaneko
et al. believe that a future challenge is to improve the ac-
curacy degradation caused by edge computing-oriented lim-
itations, such as quantization bit limitation. Although not
included in their paper, in this study, the “increase in the
number of required training sessions” was also identified as
a problem.

Here, the focus is on the fact that machine learning
theory was not designed for edge computing. When imple-
menting machine learning in edge computing, some major
constraints must be considered. Forcing an implementation
of a theory that is not designed for edge computing (e.g.,
using high-level synthesis) often results in more resource
requirements and easily exceeds the constraints [10]. Partic-
ular attention is paid to the optimizer, which is the core of
the learning algorithm in machine learning.

In this study, a new method, the optimizer Holmes is
introduced. This method was developed by considering the
characteristics and strengths of the hardware, and its theory
is different from that of existing optimizers.

2. Optimizer Review

The optimizer is an algorithm that searches for the optimal
state via multiple modifications to a structure [11]. In a neu-
ral network, an optimizer is used to reduce the difference
between the inferred and the correct value, which can be
considered as the heart of the learning algorithm. There-
fore, the optimizer algorithm is responsible for most of the
operations in the neural network and has a large impact on
the accuracy and number of training sessions. Therefore,
optimizers have attracted the attention of many researchers,
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and new optimizers are constantly being invented [12]–[18].

2.1 Gradient Descent

Gradient descent is an optimizer that can be considered as
the prototype of many optimizers. The update equation of
gradient descent is given by,

wt = wt−1 − η∇wL(wt−1), (1)

where w is the weight; t is the number of iterations; η is the
learning rate; and L is the loss function. It is a simple theory
that by differentiating the loss function L(wt−1), the direction
of the steepest descent (the direction that is considered to
have the optimal solution) is obtained, and the weights are
modified.

2.2 Momentum

The momentum optimization method adds the concept of
the law of inertia to gradient descent [13], [14]. Gradient
descent moves down the gradient in small constant steps,
whereas momentum optimization changes the speed of gra-
dient traversal depending on the previous gradient. Thus,
in general, momentum optimization converges faster than
gradient descent. The update equation of momentum opti-
mization is given by,

mt = βmt−1 − η∇wL(wt−1),

wt = wt−1 + mt, (2)

where m is a momentum vector. The momentum vector is
the sum of the previous gradients, that is, the momentum
optimization method uses the gradient as the acceleration
rather than the velocity; β, a hyperparameter with a value
between 0 and 1, prevents the momentum vector from be-
coming too large.

2.3 RMSProp

RMSProp is an optimizer that focuses on the learning rate.
Learning rate is a hyperparameter related to the speed of
decreasing gradient [15]. If the learning rate is too small,
the learning process will be slow to complete, and will get
trapped in a local solution. By contrast, if the value of the
learning rate is too large, the progress is fast; however, the
solution tends to oscillate, and the accuracy becomes un-
stable. Furthermore, because the optimal value varies de-
pending on the problem to be solved, the adjustment of the
learning rate has been a problem for many researchers. The
update equation of RMSProp is given by,

vt = βvt−1 + (1 − β)∇wL2
(wt−1),

wt = wt−1 − η√
vt + ε

∇wL(wt−1), (3)

where v is the sum of the squares of the past gradients. By
using the sum of squares of past gradients, the learning rate

is automatically adjusted. In addition, in gradient descent,
the learning rate is multiplied equally over the entire gradi-
ent, whereas in RMSProp, v varies according to the size of
the individual elements of the gradient. Therefore, the ac-
curacy is generally high; β, a hyperparameter with a value
between 0 and 1, prevents v from becoming too large (i.e.,
the learning rate becoming too small).

3. Proposed Algorithm

The new optimizer, Holmes, is inspired by the momen-
tum optimization method and is theoretically designed with
edge computing in mind. There are three major novelties in
Holmes. First, quantization, which was previously consid-
ered the main source of reduced accuracy, is used in an in-
genious way to improve accuracy. Second, the goal is to use
few resources and low power, which makes the algorithm
appropriate for implementation in edge computing. Third,
Holmes has a property similar to RMSProp in that it auto-
matically adjusts the amount of learning rate reduction de-
pending on the magnitude of individual values, which is not
present in previous momentum optimization methods.

Originally, Holmes’ theory was an attempt to qualita-
tively mimic some of the calculations of the momentum op-
timization method using quantization. Specifically, the hy-
perparameter β (which accepts values between 0 and 1) used
in the momentum optimization method is multiplied by the
momentum vector to make the momentum vector slightly
smaller. In Holmes, quantization is substituted for the oper-
ation of slightly reducing the momentum vector value. Thus,
Holmes can be formulated as:

mt = 2�log2(mt−1)� − η∇wL(wt−1),

wt = wt−1 + mt. (4)

Comparing this equation to Eq. (2), the part of βmt−1 is
2�log2(mt−1)�, and it is observed that one hyperparameter is lost.
This part represents the “logarithmic quantization”.

Fundamentally, quantization reduces the expressive
power of a number, and the more quantization is used, the
lower is the accuracy. However, by effectively combin-
ing different types of quantization, Holmes is able to im-
prove the accuracy. Holmes quantization consists of three
elements: a limitation on the number of quantization bits,
fixed-point number, and logarithmic quantization.

3.1 Fixed-Point Number

There are two typical methods for representing decimals in
hardware: fixed-point numbers and floating-point numbers.
In fixed-point numbers, the memory for storing integers and
memory for storing decimals are separated in advance. The
memory used for storage consists of a sign part, an integer
part, and a decimal part. By contrast, in floating-point num-
bers, there is a memory for storing numerical values and a
memory for storing the position of the decimal point, and
these data are used to construct numerical values during nu-
merical calculations. The memory for storing consists of a
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Fig. 1 Percentage of quantization error in relation to the value prior to
quantization when the number of quantization bits is limited to two decimal
places in a fixed-point number. The possible values after quantization are
located at equal intervals, indicating that the percentage of error is between
0% and 50%.

sign part, an exponent part, and a mantissa part. Floating-
point numbers need to be constructed every time a numerical
value is calculated. They need to be converted into expo-
nents and mantissae every time they are stored in memory.
However, fixed-point numbers do not require such conver-
sions, and as they do not need to store the position of the
decimal point, they require less memory. Fixed-point num-
bers are often used in edge computing, where the resources
consumed and the execution time are directly proportional
to cost and performance.

3.2 Limitation on the Number of Quantization Bits

In edge computing, in which available resources are limited,
maintaining the details of the data is a major issue. If the
values to be retained are too detailed, the memory require-
ment will get inordinately large. Coarser representation of
values can reduce memory requirements. However, coarser
values also lead to a loss in expressive power, which leads
to a decrease in the accuracy of the neural network. Many
researchers have struggled with this problem: “I want to re-
duce the number of memory requirements as much as possi-
ble, but I also want to guarantee a certain level of accuracy.”
In Fig. 1, the ratio of quantization error to the pre-quantized
value is displayed (averaging to 25%) with the number of
quantization bits limited to fixed-point numbers.

3.3 Logarithmic Quantization

Logarithmic quantization in this paper means approximation
to the nearest power of two below the pre-quantized value.
For example, a pre-quantized value of 6 is converted to 4
(= 22), and a pre-quantized value of 0.1 is converted to
0.0625 (= 2−4). This conversion is performed in a software-
oriented approach as follows:

1. Take the logarithm with a base of 2.
2. Round down to the nearest decimal point.
3. Substitute the value into the exponent of 2 and multiply

it by the power.

This conversion may seem complicated, but when you con-
sider the characteristics of the hardware (all values are

Fig. 2 Percentage of quantization error in relation to the pre-quantized
value when logarithmic quantization is used. The acceptable values after
quantization are not evenly spaced; the larger the absolute value, the wider
is the interval. The percentage of error falls between 0% and 50%.

Fig. 3 Percentage of quantization error in relation to the value prior to
the logarithmic quantization performed after limiting the number of quan-
tization bits to two decimal places in a fixed-point number. It is observed
that when the absolute value is small, the percentage of error that becomes
zero is high, and as the absolute value increases, the percentage of error
that becomes zero decreases.

stored in memory as binary numbers), it is very easy to per-
form, as shown below.

1. Search for the first place where 0 and 1 are flipped,
starting from the upper bits.

2. Assign 1 to the lower bit side of this place, and set ev-
erything after that to 0.

The ratio of the quantization error to the pre-quantized value
is shown in Fig. 2 and averages to 25%.

3.4 Quantization of Holmes

As shown in Fig. 1, when bit limiting quantization is per-
formed under fixed-point numbers, the interval between
possible values is equal. However, as shown in Fig. 2, in the
case of logarithmic quantization, the smaller the absolute
value, the narrower is the interval between possible values,
and the larger the absolute value, the wider is the interval
between possible values. In both cases, there is no correla-
tion between the magnitude of the value before quantization
and percentage quantization error. The percentage of quan-
tization error with logarithmic quantization performed after
limiting the quantization bit under fixed-point numbers, is
displayed in Fig. 3. The results of the analysis carried out
separately for each interval, are presented in Table 1. The
larger the value before quantization, the larger the percent-
age of error caused by logarithmic quantization. By per-
forming this operation on the momentum vector, Holmes
achieved the most important feature, which is automatic ad-
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Table 1 Average of the quantization error percentage for each of the pre-
quantized values divided into intervals. It is observed that as the absolute
value becomes larger, the average value of the error percentage increases.
In this table, the number of quantization bits consists of three integer bits
and two decimal bits. Therefore, any value greater than 23 is converted to
23; thus, the percentage error cannot be calculated.

Pre-quantized value (P) Average value of quantization error [%]

P < 0 0
0 ≤ P < 2−2 0

2−2 ≤ P < 2−1 0
2−1 ≤ P < 20 12.5
20 ≤ P < 21 18.8
21 ≤ P < 22 21.9
22 ≤ P < 23 24.2

23 ≤ P −

justment of the amount of reduction according to the size of
individual values.

4. Evaluation

Holmes was evaluated in two aspects: “How does it move
down the gradient as an optimizer?” and “How does the
convergence speed change when it is applied to neural net-
works?” For the former question, the optimization of the
three-hump camel function and Rosenbrock function were
examined. For the latter, the speed of learning was verified
on a commonly used dataset, MNIST.

Gradient descent and momentum optimization meth-
ods were selected for the former question and mini-batch
stochastic gradient descent (mini-batch SGD) and momen-
tum optimization methods for the latter for comparison [12].
The mini-batch SGD is a learning method in which the en-
tire training data are divided into smaller portions (mini-
batches); losses are calculated for each mini-batch; and
back-propagation is performed. The reason for selecting
mini-batch SGD was to facilitate the comparison with the
previous study by Kaneko et al [1]. The reason for select-
ing the momentum optimization method was that it is the
optimizer on which Holmes’ idea was based. However,
RMSProp was not used for evaluation because it was con-
cluded that RMSProp and other optimizers are not suitable
for edge computing as they require considerable resources
to be implemented [15], [17], [18].

4.1 Function Optimization

The performance of each optimizer was evaluated using two
functions (the three-hump camel function and the Rosen-
brock function). The definition of the three-hump camel
function is defined as

f (x, y) = 2x2 − 1.05x4 +
x6

6
+ xy + y2. (5)

The Rosenbrock function is defined as

f (x) =
n−1∑

i=1

[100(xi+1 − x2
i )2 + (1 − xi)

2], (6)

Fig. 4 Three-hump camel function, starting at location © and searching
for the lowest point(location ×). Red, green, and yellow represent the paths
of the search with different starting positions. Under these conditions, it
is observed that gradient descent reached the optimal solution for all three
color paths simultaneously, approximately after 4000 iterations. Holmes
with the red path reached the solution after 350 iterations. The momentum
optimization method reached the solution for all three color paths simul-
taneously approximately after 400 iterations, irrespective of whether the
hyperparameter β was 0.75 or 0.875.

Fig. 5 Rosenbrock function, starting from location © and searching for
the lowest value (location ×). Red, green, and yellow represent the search
paths with different starting positions. Under these conditions, Holmes was
able to reach the optimal solution after 370 iterations, but the gradient de-
scent and momentum optimization methods were not able to reach the so-
lution even after 5000 iterations. In addition, when the hyperparameter β
of momentum optimization method was 0.875, the movement was found to
be too large to be stable.

where n is a number of dimensions; in this case n = 2.
Figures 4 and 5 show the path and the number of it-

erations (maximum iterations = 5000) to reach the optimal
solution using the gradient descent, momentum optimiza-
tion method, and Holmes. Red, green, and yellow indicate
the paths followed by the search with different starting po-
sitions. The momentum optimization method was investi-
gated with two different hyperparameters, 0.75 and 0.875.
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Table 2 Common hyperparameters when comparing the accuracy of
three optimizers: Holmes, momentum optimization method, and mini-
batch SGD.

Activation function Sigmoid
Mini-batch size 32
Network size input 784, hidden 128, output 10

Dataset MNIST dataset
Learning rate 0.25

Number of quantization bits 16bit (sign 1, integer 2, decimal 13)

Fig. 6 Variation in accuracy when changing the hyperparameter β, which
is specific for the momentum optimization method. The other hyperparam-
eters are listed in Table 2. The data points were plotted after every 300
iterations. The values in parentheses in the legend indicate the magnitude
of β. The highest accuracy was obtained when β = 0.875.

In Fig. 4, on the three-hump camel function, gradient
descent used 2000 iterations to reach the optimal solution,
while Holmes and momentum optimization methods did not
display much difference for the number of iterations. How-
ever, in Fig. 5, for the Rosenbrock function, Holmes was
significantly faster than the gradient descent and momentum
optimization methods. Holmes was faster than the gradient
descent and momentum optimization methods in removing
the learning oscillation making it very stable compared to
the momentum optimization method with a large β.

4.2 Beta of the Momentum Optimization Method

The momentum optimization method used for the compar-
ison has a specific hyperparameter β. First a search was
conducted for the β that is most suitable for the MNIST
dataset used in this study. Hyperparameters other than β are
shown in Table 2. Because our objective is implementation
in edge computing, parameters that are easy to express were
selected by combining the powers of two. As displayed in
Fig. 6, β = 0.875 is the most appropriate for the MNIST
dataset. This value was used in subsequent evaluations.

4.3 Loss of Training Data

Subsequently, the difference in convergence speed of mini-
batch SGD, Holmes, and momentum optimization methods
were compared using “loss per iteration”, where loss is the
difference between the outputs of the neural network and the
teacher data of the training data.

Fig. 7 Comparison of the loss changes for the three optimizers: Holmes,
momentum optimization method, and mini-batch SGD. It is observed that
the speed at which the loss decreases is faster for Holmes, momentum op-
timization method, and mini-batch SGD, in that order.

Fig. 8 Comparison of the accuracy of the three optimizers: Holmes, mo-
mentum optimization, and mini-batch SGD. It it observed that Holmes
achieves higher accuracy than the momentum optimization method and
mini-batch SGD. The hyperparameter β of the momentum optimization
method was selected to be the one with the highest accuracy among the
results of the search shown in Fig. 6. The other hyperparameters are dis-
played in Table 2. Data points are plotted after every 300 iterations.

In Fig. 7, the loss is almost the same at the beginning
of the training, but as training progresses, the loss is dif-
ferent for each optimizer. It is observed that the speed of
loss reduction is faster for Holmes, momentum optimiza-
tion, and mini-batch SGD, in that order. However, it cannot
be claimed that Holmes is the best optimizer because the
training data loss is small. This alone does not prove that
the performance can match that of the new data used along
with the training data (high generalization performance).

4.4 Accuracy of Test Data

Finally, the differences in the generalization performance
of mini-batch SGD, Holmes, and momentum optimization
methods were compared using the “accuracy of test data.”
After every 300 iterations, the training (for updating inter-
nal parameters such as weights and momentum vectors) was
stopped and a test dataset different from the training dataset
was used to obtain the percentage of correct answers.

In Fig. 8, it can be observed that Holmes outperformed
the mini-batch SGD and momentum even when being vali-
dated on the test dataset. The difference in performance is
particularly noticeable when the number of learning itera-
tions is small. In nonvolatile memory, where the number
of memory accesses has a significant impact on the power
consumption, it is extremely encouraging to observe that
the number of learning iterations before convergence is low.
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This demonstrates that Holmes is a good match for edge
computing.

5. Discussion

In the evaluation section, the “number of memory accesses
for nonvolatile memory,” which is the most power-intensive
part of the edge computing was evaluated. In this sec-
tion, Holmes is compared with momentum optimization,
RMSProp, and Adam with respect to other important as-
pects of edge computing, such as memory requirements and
required operations [18].

5.1 Required Memory

The value after logarithmic quantization can be expressed
only with the information of “sign” and “the position where
0 and 1 are flipped in the number.” This means that in the
momentum optimization method, the amount of memory re-
quired to store the momentum vector is w × bit, where bit is
the number of quantization bits, whereas, in Holmes, it is
log2(w × bit). However, RMSProp does not have a momen-
tum vector, and it needs to store the value v, which is the sum
of the squares of the past gradients. The memory required
to hold the value of the gradient squared is 2 × w × bit. On
the other hand, Adam must store both the momentum vector
and the value v. Therefore, the memory requirements are
smaller for Holmes, momentum optimization, RMSProp,
and Adam, in that order.

5.2 Required Operations

Here, the required operations are considered. Table 3 shows
the number of operations required when each optimizer is
used with respect to the mini-batch SGD. Holmes has more
phases to add momentum vectors to the weights, whereas
the momentum optimization method has more phases to add
momentum vectors to the weights and multiply the momen-
tum vectors by the hyperparameter β. However, because ad-
dition and multiplication are also used in mini-batch SGD,

Table 3 Comparison of resource requirements of Holmes, momentum
optimization method, RMSProp, and Adam with respect to mini-batch
SGD. The comparison is made in three categories: required memory, re-
quired operations, and number of hyperparameters. Each cell shows the
increase compared to mini-batch SGD.

Memory Operations Hyperparameter

mini-batch SGD − − −
Holmes log2(w × bit) addition ±0

Momentum w × bit addition +1
multiplication

RMSProp 2 × w × bit addition +1
multiplication

square root
division

Adam 3 × w × bit addition +2
multiplication

square root
division

Holmes and momentum optimization methods can use the
same operators.

By contrast, RMSProp and Adam have more square
root operations and divisions along with addition and multi-
plication. Square root operations and divisions are not used
in mini-batch SGD. Implementing square root and division
in hardware requires a lot of resources and time and is not
suitable for edge computing with limited resources [19].

5.3 Hyperparameters

Hyperparameters are parameters that must be manually set
by the user. As the appropriate value changes depending
on the problem to be solved, the more hyperparameters
there are, the more the burden on the user increases [20].
The βmt−1 part of the momentum optimization method is
2�log2(mt−1)� in Holmes, and β is missing. It is observed
that Holmes has one less hyperparameter than the momen-
tum optimization method. In addition, RMSProp does not
have a momentum vector but uses another hyperparameter
to prevent the learning rate from becoming extremely small.
Adam also has a momentum vector and the same hyperpa-
rameters as RMSProp.

Therefore, momentum optimization and RMSProp
have one hyperparameter, whereas Adam has two hyperpa-
rameters, and Holmes has even fewer hyperparameters.

5.4 Characteristic Parts

The momentum optimization method and Holmes both use
momentum vectors. In the momentum optimization method,
the entire momentum vector is multiplied by a constant
value β to prevent the momentum vector from becoming ex-
tremely large. Similarly, in Holmes, there is an operation
to prevent the momentum vector from becoming extremely
large; however, rather than multiplying by a constant value,
Holmes combines logarithmic quantization with a limit on
the number of quantization bits under a fixed-point num-
ber. This operation does not simply remove a small amount
of momentum vector, but the percentage of reduction varies
according to the size of the elements in the momentum vec-
tor. This method of “adjusting each element according to its
size” is also used in RMSProp. However, the target of the
automatic adjustment is the momentum vector in Holmes,
and the learning rate in RMSProp. In addition, RMSProp
achieves automatic adjustment by dividing the learning rate
by the square root of the sum of the squares of the gradi-
ents. Adam combines the properties of both the momentum
optimization method and RMSProp.

5.5 Hardware Design for Backpropagation

Because the previous study by Kaneko et al. [1] included a
hardware version of the mini-batch SGD, that configuration
was adopted to construct a block diagram that adapts the
momentum optimization method and Holmes. Compared
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Fig. 9 Mini-batch SGD’s update module for backpropagation is rewrit-
ten based on previous study by Kaneko et al.; h is the output of the previous
layer; δ is the error gradient for the previous layer; and >> is a bit shift sub-
stitution for the learning rate. LUT contains an activation function in the
form of a lookup table, and dif LUT contains the derivative of the activation
function in the form of a lookup table.

Fig. 10 The update module of the momentum optimization method for
backpropagation. The green area shows the additional operation compared
to Fig. 9.

Fig. 11 Holmes’ update module for backpropagation. The blue area
shows the additional operation compared to Fig. 9. The compressor con-
verts the input value into the minimum information necessary to represent
the value after logarithmic quantization. The decompressor converts that
information into a value.

with the previous study shown in Fig. 9, the momentum op-
timization method is shown in Fig. 10. It adds memory to
store the momentum vector, hyperparameter β, and multi-
plication and addition phases. The size of the memory used
to store the momentum vector is denoted by w×bit. Holmes
also has additional memory to store the momentum vector,
as illustrated in Fig. 11; however, because it is compressed
by Holmes quantization, the amount of memory required

for storage is reduced to log2(w × bit). In addition, no hy-
perparameters are added, but instead, a compressor and an
expander using logarithmic quantization. The compressor is
the first place where 0 and 1 are inverted, starting from the
high-order bit, and information is output on the “most high-
order bit (sign bit)” and the “position on the lower bit side
of the place where 0 and 1 are inverted (inversion position).”
When the code bit is 0, the decompressor outputs a numeri-
cal value in which only the inversion position is set to 1, and
when the code bit is 1, it outputs a numerical value in which
everything above the inversion position is 1, and everything
below the inversion position and the inversion position is 0.

6. Conclusion

Various optimizers have been devised to improve the per-
formance of neural networks. However, only a few of these
can be applied to edge computing. One of the reasons is that
the optimizer theory is not designed with hardware in mind.
When implementing an optimizer for edge computing, there
are considerations of “what type of computation hardware
constraints,” such as “how many quantization bits should be
limited,” and “what circuitry should be used,” and these con-
straints are extensive. In other words, most existing optimiz-
ers require considerable resources (memory, computation,
power, etc.) during implementation, which easily exceeds
the constraints of edge computing.

Our new optimizer, Holmes, is designed for edge com-
puting. Compared to other optimizers, it requires less mem-
ory, fewer operations, and fewer hyperparameters, making it
more compatible with dedicated hardware, such as FPGAs
and ASICs. In addition, by reversing the weakness of the
hardware implementation, which is the “decrease in accu-
racy and learning convergence speed as a result of the quan-
tization bit limitation,” and by using the numerical expres-
sions unique to hardware, dramatically improved conver-
gence speed is obtained with Holmes.
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