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abstraCt

We propose a bio-inspired circuit performing pulse-density modulation with single-electron devices. The 
proposed circuit consists of three single-electron neuronal units, receiving the same input and are connected 
to a common output. The output is inhibitorily fedback to the three neuronal circuits through a capacitive 
coupling. The circuit performance was evaluated through Monte-Carlo based computer simulations. We 
demonstrated that the proposed circuit possesses noise-shaping characteristics, where signal and noises 
are separated into low and high frequency bands respectively. This significantly improved the signal-to-
noise ratio (SNR) by 4.34 dB in the coupled network, as compared to the uncoupled one. The noise-shaping 
properties are as a result of i) the inhibitory feedback between the output and the neuronal circuits, and ii) 
static noises (originating from device fabrication mismatches) and dynamic noises (as a result of thermally 
induced random tunneling events) introduced into the network. [Article copies are available for purchase 
from InfoSci-on-Demand.com]

Keywords: Single-electron, pulse-density modulation, noise-shaping, fault-tolerant, defect-tolerant, neuro-
morphic LSIs, reliable circuit design, Beyond CMOS architectures  

introduCtion

For the past 3 decades, the scaling of semicon-
ductor devices has been the primary driving 

force behind improving the performance of LSI 
processors and systems. The decreasing feature 
sizes of transistors have been accompanied 
by dramatic increase in speed and integration 

a neuromorphic single-electron 
Circuit for noise-shaping
Pulse-density Modulation

Andrew Kilinga Kikombo, Hokkaido University, Japan

Tetsuya Asai, Hokkaido University, Japan

Takahide Oya, Yokohama National University, Japan

Alexandre Schmid, Swiss Federal Institute of Technology (EPFL), Switzerland

Yusuf Leblebici, Swiss Federal Institute of Technology (EPFL), Switzerland

Yoshihito Amemiya, Hokkaido University, Japan



International Journal of Nanotechnology and Molecular Computation, 1(2), 80-92, April-June 2009   81

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global 
is prohibited.

densities, which have in turn led to increased 
and diversified functionality. This trend has been 
viable mainly due to guaranteed reliability in 
the downscaled devices even with decreasing 
process technologies. Reliability corresponds 
to high yields per die, hence low production 
costs (high cost efficiency), giving the circuit 
designer the opportunity to create reliable 
integrated systems with improved processing 
speeds, and increased functionality. 

However, as the physical feature sizes ap-
proach the deep sub-micron regime, process varia-
tions and undesirable internal (and or external) 
noises associated with nano-scale properties pose 
critical concerns in the future of scaling and in 
system system design; they dramatically reduce 
the reliability of electronic devices on the edge of 
the nano-scales (Bowman, 2002; Constantinescu, 
2003; Jose, 2003; Way & Taeho, 1999). This 
reduced reliability is even more conspicuous as 
electronic device sizes are further scaled down to 
the nano-meter regime (Calhoun, 2008; Orshansky, 
2002; Stolk, 1998). 

Getting rid of these nano-scale characteristics 
would involve introducing error-detecting circuits 
within the system, which leads to advanced com-
plexity, and design tradeoffs in using high integra-
tion capacities available to the circuit designer. 
Some design techniques offering possible ways 
to mitigate the impact of within-die variations 
have been explored (Marculescu & Talpes, 2005; 
Tiwari, 2007). Other works involving introducing 
error-detecting circuitry in electronic systems in-
clude architectures proposed by Milor (1989) and 
Chatterjee (1993). Unfortunately, these approaches 
offer only a short term solution. The uncertainty 
in coming up with a long-lasting solution to these 
challenges has paved the way into a new field of 
the so called emerging research nano devices, 
which effectively utilize nano-scale characteristics 
in their operation. Such devices are viewed as 
promising blocks for creating application-specific 
processors, and ultra low-power systems in com-
ing generations of LSI platforms. Such devices 
would include single-electron devices (Grabert & 
Devoret, 1992; Nakajima, 1997). 

Single-electron devices inherently operate 
with extreme low power dissipation, and provide 
a high integration density per unit area. Thus, 
they are viewed as potential building blocks 

for low-power, parallel-based computational 
applications in future LSI platforms. However, 
one of the major problems facing single-electron 
devices is that they are potentially unreliable. 
Their low reliability originates from two factors: 
i) large variations in the features of fabricated 
devices, hence device characteristics, and ii) 
sensitivity to internal and external noises. 
Therefore, despite all the appealing features in 
utilizing nano-electronic devices in future elec-
tronic systems, we have to address and solve a 
fundamental question; how do we build reliable 
systems from error-prone building devices? 

Improvements in fabrication technology 
alone cannot accomodate such enormous device 
failures. Therefore in designing functional elec-
tronic devices in the deep sub-micron and post-
silicon era, we need to keep in mind the fact that 
we have to build reliable systems with unreliable 
(ITRS, 2005), and error-prone devices (Nikolic, 
2001; Schimid & Leblebici, 2004; Goser, 1997). 
Thus the need to address robustness and design 
systems with large enough signal-to-noise ratio 
is inevitable (Hamed, 1997). 

An innovative architectural approach to 
increasing reliability is to exploit the internal 
and external noises, and the heterogeneity 
originating from fabrication mismatches in 
designing new electronic systems. For ex-
ample, if we look at how living organisms 
code and transmit signals in their systems, we 
find similarities between neurons (the basic 
elements responsible for information process-
ing in neuronal systems) and nano-meter sized 
electronic devices. Neurons are sensitive to 
noises, operate asynchronously because of dif-
ferences in their structural properties, and have 
large time jitters—that is, they are imperfect 
and unreliable (Shadelen & Newsome, 1998; 
Shint, 1993; Softky, 1993)—-but nevertheless 
they carry out information processing effec-
tively. Similarly, nano-electronic devices (for 
instance single-electron devices) are sensitive 
to external interferences and noises, and have 
diverse fabrication variations in feature sizes, 
resulting in heterogeneity in parameters and de-
vice characteristics. Thus in creating electronic 
systems with such imperfect units, obtaining 
hints from living organisms is evidently of 
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much importance. Such electronic systems that 
mimic neurological systems are referred to as 
neuromorphic circuits (Douglas, 1995; Mead, 
1998). A number of neuromorphic circuits 
that operate by utilizing noises and device 
fabrication mismatches have been proposed. 
They include neuromorphic CMOS circuits 
utilizing device fabrication mismatches and 
environmental noises (Utagawa, 2007), single-
electron circuits employing thermally induced 
stochastic resonance (SR) (see Collins (2002) 
for details on SR) in signal transmission (Oya, 
2007), and single-electron networks performing 
synchrony detection (Oya, 2006). 

This paper explores the possibility of creating 
novel circuit architectures with single-electron 
devices, by employing environmental (dynamic) 
noises, and static noises originating from fab-
rication mismatches. The circuit architecture is 
inspired by information coding mechanisms in 
biological neural networks that convert analog 
input signals into spike densities (digital-pulse 
streams) in the time domain. This operation is also 
referred to 1-bit analog-to-digital conversion, and 
is often implemented with ΔΣ modulators (Aziz, 
1996; Schreier & Temes, 2004). Such converters 
exhibit noise-shaping properties (see Mayr & 
Schueffny (2005); Shin (2001-a); Shin (2001-b)) 
for details on neuronal noise-shaping), separating 
signal and noises into low and high frequency 
bands respectively. A theoretical investigation of 
noise-shaping in neural networks is elaborated 
by Mar (1999). In their work, they demonstrated 
that noise-shaping was improved by introducing 
an inhibitory coupling between noisy model in-
tegrate-and-fire neurons (IFNs). In addition, the 
authors note that the noise-shaping properties 
were improved due to heterogeneity and noises 
introduced into the network. Inspired by their work, 
we propose and investigate the performance of a 
single-electron pulse-density modulating circuit 
that exhibits noise-shaping properties. 

This paper is organised as follows. Firstly, 
a brief review of pulse-density modulation in 
neurons is presented. Secondly, implementa-
tion of integrate-and-fire neurons, together 
with fundamental operation of single-electron 
devices is illustrated. Thirdly, a model on how 
to realize pulse-density modulation employing 

excitatory and inhibitory mechanisms is ex-
plained. This is followed by the circuit structure 
implementing the model with single-electron 
oscillators. Fourthly, the performance of the 
proposed circuit is investigated. The paper is 
summarized by noting on a possible architecture 
that also employs noises in achieving improved 
signal-to-noise ratio in single-electron circuits 
and nanowire transistor networks. 

a short revieW of 
Pulse-density Modulation 
in neurons

A neuron aggregates inputs from other neurons 
connected through synapses. The aggregated 
charge raises the membrane potential until it reach-
es a threshold, where the neuron fires generating a 
spike. This spike corresponds to a binary output 1 
. After the firing event, the membrane potential is 
reset to a low value, and it increases again as the 
neuron accepts inputs from neighboring neurons 
(or input signals) to repeat the same cycle; produc-
ing a stream of   one   and   zero   pulse trains. The 
spike interval (density of spikes per unit time) is 
proportional to the the analog input voltage i.e. the 
level of analog input is coded into pulse density. 
Thus a neuron can be considered as a 1-bit A-D 
converter (Cheung & Taung, 1993; Hovin, 2002) 
operating in the temporal domain. Figure 1(a) 
shows a schematic representation of analog-to-
digital conversion in neurons. The output pulse 
density is proportional to the amplitude of the input 
signal. The operation of neurons is often modeled 
with spiking neurons such as the integrate-and-fire 
neurons. Figure 1(b) illustrates the fundamental 
operation of an integrate-and-fire (IFN) neuron. 
The open circles (◦) and shaded circles (•) represent 
excitatory and inhibitory synapses, respectively. 
The IFN receives input signals (voltages) through 
the excitatory synapses (to raise its membrane 
voltage) and inhibitory synapses (which decrease 
the membrane voltage) from adjacent neurons, to 
produce a spike if the summed input voltage (∑ 
Vi

ex − ∑Vj
in) exceeds the threshold voltage. After 

the IFN fires, its membrane voltage is reset to a 
low value, and the integration action resumes. 
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The output pulse density is proportional to the 
net input voltage. 

sinGle-eleCtron 
inteGrate and fire 
neuron

A single-electron oscillator (Averin & 
Likharev,1986; Grabert & Devoret, 1992; 
kikombo, 2008, Likharev & Zorin, 1985; Oya, 
2005) is used to model the operation of an in-
tegrate-and-fire neuron (IFN). A single-electron 
oscillator (Figure 2(a)) consists of a tunneling 
junction (capacitance = Cj) and a high resistance 
R connected in series at the node (•) and biased 
with a positive or a negative voltage Vd. It pro-
duces self-induced relaxation oscillations if the 
bias voltage is higher than the tunneling threshold 
(Vd > e/(2Cj)) (where e is the elementary charge 
and kB  is the Boltzmann constant). The node volt-

age V1 increases as the capacitance Cj is charged 
through the series resistance (curve AB), until it 
reaches the tunneling threshold e/(2Cj), at which 
an electron tunnels from the ground to the nanodot 
across the tunneling junction, resetting the node 
voltage to −e/(2Cj). This abrupt change in node 
potential (from B to C) can be referred to as a fir-
ing event. The nanodot is recharged to repeat the 
same cycles. Therefore, a single-electron oscillator 
could be viewed as an integrate-and-fire neuron, 
which aggregates input voltages (or inputs from 
neighboring neurons) producing a pulse when its 
node voltage reaches the threshold voltage (Figure 
2(b)). By feeding a sinusoidal input to a single-
electron oscillator, one can adjust the probability 
of electron tunneling in the circuit: the tunneling 
rate increases as the input voltage rises above the 
threshold and gradually decreases to zero as the 
input approaches and falls below the threshold 
value. In other words, a single-electron oscilla-
tor converts an analog input into digital pulses. 
A single-electron oscillator can thus be viewed 

output pulse traininput signal
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Figure 1. (a) Pulse density modulation in neurons: analog input is converted into a pulse train 
whose density is proportional to the net amplitude of the input signal. (b) Fundamental structure 
and operation of integrate-and-fire neurons (IFNs). The IFN receives input voltages through 
excitatory and inhibitory synapses, and produces pulses when the net input voltage exceeds the 
threshold. The output pulse density (firing rate) is proportional to the net input voltage. 
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as a PDM converter, that produces a spike train 
(or produces zero) if the input signal exceeds (or 
falls below) the threshold value. 

CirCuit iMPleMentation

Figure 3 shows the model of the proposed 
circuit, consisting of three neuronal elements. 
The neurons receive the same analog input 
through excitatory synapses (◦) and produce 
digital pulses toward the global inhibitor Σ 
(Asai; 2003). The output is fed-back to the three 
elements through inhibitory synapses denoted 
by shaded circles (•) in the network. Firing in 
any of the neurons in the network decreases 
the membrane potential of the other neurons, 
reducing the probability of their firing. 

The neuronal structure in Figure 3 is 
implemented with single-electron oscillators 
that receive the same analog input. The input 
induces electron tunneling in the single-elec-
tron oscillators, generating pulses toward the 
global inhibitor. The global inhibitor Σ sums the 
pulses to produce a train of spikes representing 

tunneling (firing) events in the three neurons. 
Figure 4 shows the circuit configuration. Each 
neuron in the network is implemented with a 
single electron oscillator. The global inhibitor 
is realized by numerically summing the firing 
events in the network. Inhibitory synapses are 
implemented by coupling capacitances (C) that 
decrease the node voltages of all the oscillators 
once a pulse is released at the output. 

Each neuron in the network receives the 
same input (V (t)) raising its node voltage. 
Whenever any of the three single-electron os-
cillators reaches its threshold voltage, it fires, 
releasing a pulse toward the global inhibitor. The 
global inhibitor, through the coupling capaci-
tors C, subtracts a certain amount of voltage 
from the other oscillators, suppressing them 
from tunneling for a certain period of time. 
This contributes to the distribution of output 
pulses. In the absence of the global inhibitor, 
all the neurons would fire randomly and with 
almost the same timing, producing a Poisson-
like distribution of inter-spike intervals (ISIs). 
Contrally, by introducing the global inhibitor, 
consecutive firing events in the network are sup-

V1
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tunneling
 junction

Cj

(b)(a)
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Figure 2. Single-electron tunneling (SET) oscillator: (a) circuit configuration and (b) waveform 
showing oscillation of node voltage V1, as capacitor Cj is charged through resistance R (from A 
to B) and reset by an electron tunneling from the ground to the node (voltage drop from B to C). 
This sudden drop in the node voltage (BC) corresponds to a pulse output. 
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pressed, resulting in a Gaussian-like distribution 
of ISIs in the coupled network. 

siMulation results

As mentioned in the introduction, the noise-
shaping properties of the network of model 
neurons were reportedly improved by intro-
ducing dynamic and static noises (Mar, 1999). 
In our circuit, this was realised as follows. As 
noted earlier, thermal noises lead to random 
electron tunneling in single-electron devices. 
We therefore introduced dynamical noises by 
tuning the temperatures in both the coupled 
and the uncoupled networks. Static noises were 
introduced only in the coupled network, by 
varying the values of series resistances R. In 
the coupled network, all the series resistances 
were set to 44 MΩ, whereas in the coupled 
network, the mean value of the three resistances 
was 44 MΩ, and the variance was ±12.5%. The 
inhibitory coupling in the coupled network 
was implemented with a capacitive coupling 
of 4 aF. The temperature was set to 0.5 K in 
all simulations. 

The performance of both the coupled and 
the uncoupled circuits was investigated through 
Monte-Carlo based computer simulations. All the 
circuit units in both the coupled and the uncoupled 
networks were fed with a sinusoidal input V (t) 
= V0 +Asin(2πft), where amplitude A = 2.5 mV, 
frequency f = 100 MHz, and bias voltage V0 = 
7.85 mV. 

Figure 5 shows the raster plots of the firings 
of the network elements. The top diagrams of 
(a) and (b) show the random pulses for each 
unit in the uncoupled and coupled networks, 
respectively. The bottom diagrams in (a) and 
(b) show the summed output (pulse train) for 
all the elements in the uncoupled and coupled 
networks, respectively. From the diagrams, 
we could observe that the firing timings in the 
uncoupled network were random and all the 
neurons fired with almost the same timing. In 
the coupled network, however, the firing of one 
of the neurons inhibited the others from firing, 
thus reducing the probability of consecutive 
firing in the network. In addition, the variance 
in the series resistances results in variations in 
the time constants of the network neurons. This 
reduced the probability of neurons attaining 
the firing threshold at the same time, and thus 

Figure 3. Model of pulse-density modulation circuit employing excitatory and inhibitory mecha-
nisms. A common input is fed to the three neurons through excitatory synapses (◦), while the 
output is fedback to the three neurons through inhibitory synapses (•). 
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improved the distribution of firing intervals in 
the network. Consequently, these two factors 
resulted in well distributed firing timings in the 
network, leading to a Gaussian-like distribution 
of inter-spike intervals. 

Figure 6 shows the ISI distribution of firing 
events in the whole network. The histogram 
for the coupled network shows a Gaussian-like 
distribution with an inter-spike interval of 1.65 
ns at the maximum number of firing counts. 
The histogram for the uncoupled network, in 
contrast, shows a Poisson-like distribution. We 
also investigated the effect of increasing the 
variance in the series resistances on the standard 
deviation of the Gaussian-like distribution. We 
found that the standard deviation increases 
as the variation decreases below or increases 
above 12.5 %. As the variance decreases, the 
probability that multiple neurons in the network 
reach the threshold voltage at the same time 
increases. This shifts the ISI at the maximum 
firing rate toward zero, consequently leading 
to a larger standard deviation of the ISI distri-
bution. The ISI distribution can, however, be 
tuned by adjusting the value of the inhibitory 

coupling capacitance C. As the coupling strength 
increases, the number of neurons reaching the 
threshold concurrently decreases drastically. In 
other words, the firing timings tend to distribute 
evenly, resulting to a sharper Gaussian-like 
distribution. However, increasing the coupling 
strength to a relatively high value, beyond an 
optimal value (of 4 aF in our simulations), leads 
to a winner-takes-all (Cohen & Grossberg, 1983; 
Kaski & Kohen, 1994) operation (where only 
one neuron in the network produces the highest 
spike rate and inhibits all the others from fir-
ing). This would be undesirable, especially in 
a network of fault- and defect-prone elements, 
where increasing the probability of correct 
operation requires that all the elements play a 
substantial part in the network operation (i.e. 
a winners-share-all (Fukai & Tanaka, 1997) 
operation, where several neurons in the network 
survive). Thus obtaining an ideal operation of 
the network requires tuning the firing rates of 
individual neurons though the series resistances, 
and also tuning the summed firing rate of the 
network through the capacitive coupling to 
obtain a winners-share-all type function. 

Figure 4. Single-electron circuit performing pulse-density modulation. The structure consists of 
three single-electron oscillators, and a global inhibitor Σ. The output is fed back to all the other 
oscillators through the capacitive coupling C. 
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Figure 7 shows the power spectra for the 
coupled and uncoupled networks. The power 
in both cases was calculated with 25 runs aver-
aged with a square window. From the results we 
can confirm that the global inhibitory coupling 
and the heterogeneity in series resistances 
collectively helped reduce the noise level in 
the coupled network substantially. The signal-
to-noise ratio in the uncoupled network was 
22.96 dB, while that in the coupled network 
was 27.30 dB below the cutoff frequency of 1 
GHz. The harmonic distortions in the results 
are due to (i) the intrinsic firing rates of the 
individual neurons in the network and (ii) non-
linear feedback introduced to the network. These 
distortions degraded the SNR characteristics. 
They could be decreased by setting the input 
signal frequency to a value much lower than 
the firing frequencies of individual neurons in 
the network. Another way of increasing the 
SNR without tuning the input frequency would 
be by filtering the output signals, to get rid of 

the higher frequencies. This is often realized 
with digital filters in the feedback loop of ΣΔ 
converters (Kim, 2007).

disCussions and 
ConClusion 

To provide a basis for designing electronic 
circuits with mismatch-prone single-electron 
devices, this paper proposed and investigated 
the performance of a bio-inspired 1-bit ana-
log-to-digital converter. The circuit elements 
are coupled to each other through a global in-
hibitory coupling. Through Monte-Carlo based 
computer simulations, we demonstrated that the 
presence of static and dynamic noises, and the 
global inhibitory coupling introduced into the 
circuit play an important role in improving its 
noise-shaping properties. The signal-to-noise 
ratio improved by 4.34 dB in the coupled net-
work as compared to the un-coupled one. 

Figure 5. Raster plots for firing events for uncoupled (left diagrams) and coupled (right diagrams) 
networks. The top diagrams show firing events for each neuron, while the bottom diagrams show 
summed output spike train at the global inhibitor Σ. Firing events in the uncoupled network 
were random and almost consecutive, whereas firing timings in the coupled network were well 
distributed as a result of the inhibitory coupling inhibiting concurrent events.
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Figure 6. Histogram of inter-spike intervals (ISIs) for coupled and uncoupled networks. The 
uncoupled network shows a Poisson-like distribution of ISIs where the firing events in the network 
elements are almost concurrent. The coupled network shows a Gaussian-like distribution, as a 
result of distributed firing events. 

Figure 7. Power spectra of coupled and uncoupled networks. The coupled network shows a 
reduced noise level in the lower frequencies (signal band), improving the SNR with 4.34 dB as 
compared to the uncoupled network.

In the present network we extensively in-
vestigated the effect of static noises as a result 
of variations in series resistances, and of the 
inhibitory coupling in the network to noise-
shaping properties. Investigating the effect of 
dynamic noises at higher temperatures, would 

also give a guideline into actual circuit design 
with such noise sensitive devices. From the re-
sults of these investigations, we can deduce that 
the performance of the circuit would improve 
up to the optimal value of thermal noises, and 
then deteriorate drastically as randomly induced 
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firing further increases. This is as a result of 
decreased effect of the inhibition strength which 
contributes to the Gaussian-like distribution as 
discussed in the simulation results. 

Also, choosing the optimal number of 
neurons to use in the network would play an 
important role in improving its performance. 
As the number of neurons increases, we would 
obtain better resiliency toward faults and defects 
in the network. This would however, come at 
the expense of tuning the optimal inhibitory 
coupling strength to realize a winners-share-
all operation. 

Before summarizing the paper, it’s worth 
noting on similar promising works in achieving 
robust electronic systems by utilizing noises in 
improving signal-to-noise ratio in electronic 
systems. This approach has been demonstrated 
with single-electron devices (Oya, 2007), and 
nanowire transistor networks (Kasai & Asai, 
2008) by some of the authors of this paper. The 
architectures effectively employ stochastic reso-
nance (SR) (Collins, 2002), and demonstrate 
a viable novel approach to realizing robust 
systems in noisy environments. Stochastic reso-
nance is a phenomenon where weak signals can 
be retrieved from a noisy output (Gammaitoni, 
1998; Simonotto, 1997) by applying an optimal 
amount of random noise. Oya (2007) proposed 
a single-electron neural network that utilizes SR 
in signal transmission in neural networks, and 
successfuly demonstrated that using SR indeed 
improved the temperature performance of the 
circuit. Kasai and Asai (2008) experimentally 
investigated the performance of nanowire tran-
sistors with variations in threshold voltages and 
operating in a noisy experimental setup. In both 
cases, the effects of SR were investigated by 
setting the input signal to a value lower than 
the tunneling (firing) threshold of the network 
elements. By applying noises, network ele-
ments with non-zero inputs were induced to 
tunnel—tunneling events synchronized with the 
input signal to a certain quantity of noises. The 
authors showed that the SNR in their circuits 
was enhanced through partially using noises. 

Such innovative approaches, in addition 
to the neuromorphic methodology described in 

this paper would be indispensable in addressing 
reliability issues in electronic circuitry with 
nano-electronic devices. From the investigation 
results in this paper, we can conclude that by 
learning from biological systems: high levels 
of redundancy where information processing 
depends on many neurons operating in parallel, 
controlled signal transfer through excitatory 
and inhibitory synapses, and stochastic reso-
nance mechanisms, we could get hints on how 
to design circuits that perform better even in 
noisy environments and (or) with failure-prone 
electronic devices. 
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