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We propose an analog integrated circuit that implements a resonate-and-fire neuron (RFN) model based
on the Lotka-Volterra (LV) system. The RFN model is a spiking neuron model that has second-order
membrane dynamics, and thus exhibits fast damped subthreshold oscillation, resulting in the coincidence
detection, frequency preference, and post-inhibitory rebound. The RFN circuit has been derived from
the LV system to mimic such dynamical behavior of the RFN model. Through circuit simulations, we
demonstrate that the RFN circuit can act as a coincidence detector and a band-pass filter at circuit level
even in the presence of additive white noise and background random activity. These results show that
our circuit is expected to be useful for very large-scale integration (VLSI) implementation of functional
spiking neural networks.
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1. Introduction

Dynamical properties of spiking neural networks and
their functional roles in information processing have
been considered to be highly attractive from a point
of view of hardware implementation of neuromorphic
systems.1 In fact, findings in neuroscience3–14 have
provided valuable insights into implementation of
functional networks of silicon spiking neurons. Based
on these findings, such networks of silicon spiking
neurons can increase noise robustness and tolerance

in sensory coding29,32,33 and reduce the influence of
device deviation on their operation29,31–34,40,41 in
addition to the abilities of information processing
including image processing,18–23,28 auditory feature
extraction,24,25 onset detection,29 and learning and
memory.30,31, and of sensori-motor integration.16

Recent research efforts for functional networks
of silicon spiking neurons concentrate on real-time
event-based computation,25–30,46–48 whereas major
previous works have been related with rate-based
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computation.17–24 Furthermore, this trend would be
accelerated toward multi-chip system integration by
rapid progress in the address-event representation
(AER) protocol,15 which is an asynchronous inter-
chip communication protocol for reducing massively
connections in very large-scale integration (VLSI)
systems.

For designing of functional networks of silicon
spiking neurons, a major requirement is the ability
to extract meaningful information embedded in spike
sequences. Temporal filtering properties are needed
to extract the frequency of spike sequences, which
carry information in the event-based computation as
well as the rate-based computation. Coincidence or
synchrony detection are considered to play essential
roles in information processing in the event-based
computation since fine temporal structure of spike
sequences may be another carrier of information.

Such functions of the information selectivity in
silicon spiking neural networks are limited by the
performance of components of the networks: neuron
and synaptic circuits. For instance, the Axon-Hillock
circuit,1 widely known as an electronic analogue of
the integrate-and-fire neuron (IFN) model, can only
act as a low-pass filter for a sequence of pulses. For
increasing the information selectivity, spiking neu-
ron circuits,31,42–49 such as a low-power IFN cir-
cuit with frequency adaptation31 and asynchronous
chaotic spiking neuron circuits,47,48 have been alter-
natively developed. These neuron circuits provide
functions of synchrony detection and temporal filter-
ing to the network circuits. Synaptic circuits can also
increase the information selectivity of silicon spik-
ing neural networks.29,31,32,35–41 These synaptic cir-
cuits act as a nonlinear temporal filter by themselves.
However, most of these circuits can work more effec-
tively at network level. For instance, it is required to
combine multiple synaptic circuits for constructing a
spatio-temporal filter or a band-pass filter.

In this paper, we propose an analog integrated
circuit that implements a resonate-and-fire neuron
(RFN) model proposed by Izhikevich.50 The RFN
model is a spiking neuron model that has second-
order membrane dynamics, and thus exhibits fast
subthreshold oscillation, resulting in the coincidence
detection, frequency preference, and post-inhibitory
rebound. Such dynamic behavior was implemented
as an analog integrated circuit using complementary
metal-oxide-semiconductor (CMOS) technology. We

will demonstrate that the RFN circuit can act as a
coincidence detector and a band-pass filter at circuit
level through circuit simulations using the simulation
program with integrated circuit emphasis (SPICE).
We will further investigate (i) the effects of white
noise and (ii) background random activity on the
performance of the signal detection; the coincidence
detection and the frequency preference. Finally, we
will consider (iii) the influence of device deviation on
the circuit operation.

This paper is organized as follows. In Sec. 2, the
dynamical behavior and the related functions of the
RFN model are described. In Sec. 3, analog inte-
grated circuit implementation of the RFN model is
illustrated in detail. In Sec. 4, we will show the sim-
ulation results for the signal detection of the RFN
circuit. The summary of the present research is given
in Sec. 5.

2. Resonate-and-Fire Neuron (RFN)
Model

We here describe a resonate-and-fire neuron (RFN)
model proposed by Izhikevich.50 The RFN model is
a spiking neuron model with second-order membrane
dynamics and a firing threshold. The dynamics of the
RFN model are as follows:

ẋ = bx − wy + I (1)

ẏ = wx + by (2)

or given by an equivalent complex form:

ż = (b + iw)z + I (3)

where z = x + iy is a complex state variable. The
real and imaginary parts, x and y, are the current-
and voltage-like state variables, respectively. The
constants, b and w are parameters, and I is an exter-
nal input. If the variable y exceeds a certain thresh-
old ath, the variable z is reset to an arbitrary value zo,
which describes activity-dependent after-spike reset.
This model exhibits a damped subthreshold oscilla-
tion of membrane potential due to the second-order
membrane dynamics. As a result, the RFN model is
sensitive to the timing of stimuli.50

Figure 1 shows typical behavior of the RFN
model in response to input pulses. In this case, we
used the following parameters: b = −0.1, w = 1,
ath = i, zo = −0.5 + i, and the input pulses were
given by: I = imax · (t/τ)exp(1− t/τ), where the
time constant τ = 50ms, the maximal amplitude
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Fig. 1. Behavior of the resonate-and-fire neuron model in response to (A) a single pulse, (B) a coincident doublet, (C) a
non-resonant doublet, (D) a resonant doublet, and (E) a non-resonant doublet. The output pulses are manually written
to clarify the firing time in (B) and (D). Phase plane portraits show the sensitivity to the timing of the inputs, where the
arrows represent the direction of the corresponding inputs.

imax = 1.2, and t was an elapsed time since a pulse
was given. When a weak pulse that cannot evoke
an action potential alone arrives at an RFN model,
a damped subthreshold oscillation occurs, as shown
in Fig. 1A. When a pair of pulses arrives at the
RFN model at a short interval (a coincident doublet,
e.g. 2.5ms, Fig. 1B), or at an interval nearly equal
to the intrinsic period of the subthreshold oscilla-
tion (a resonant doublet, 12.5ms, Fig. 1D), the RFN
model fires a spike. However, the RFN model does
not fire a spike in response to a doublet with an inter-
val in other ranges, e.g. 7.5ms (Fig. 1C) or 15.0ms
(Fig. 1E).

These results indicate that the RFN model can
detect coincidence pulses (coincidence detection),
and resonate with a sequence of pulses at a resonance
frequency (frequency preference). In addition it has
been reported that the RFN model can fire a spike
in response to an inhibitory pulse (post-inhibitory
rebound).50

3. Circuit Implementation

We here propose an analog integrated circuit that
implements the RFN model.49 The circuit consists
of a membrane circuit, a threshold-and-fire circuit,
and excitatory and inhibitory synaptic circuits,2,43

as shown in Fig. 2.

3.1. Membrane circuit

The membrane circuit was designed based on the
Lotka-Volterra (LV) system having periodic solutions
for mimicking the subthreshold membrane dynamics
of the RFN model.49

3.1.1. Lotka-Volterra (LV) system

The LV system53 is modeled after the interactions
between multiple species in an ecological system,
which is represented by the following equations:

żi = zi

(
ri +

N∑
j

aijzj

)
, (i, j = 1, 2, . . . , N) (4)

where N denotes the number of kinds of species Czi

and ri the population and the linear growth rate of
the i-th species, respectively, and aij the interaction
between the species. By introducing the nonlinear
transformation:

zi = bi expxi, bi = const. (5)

into the LV system, the following equation:

ẋi = ri +
N∑
j

aijbj exp xj , (6)

are obtained. The resulting equations are suitable for
analog integrated circuit implementation because of
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Fig. 2. Schematic of the resonate-and-fire neuron circuit. The circuit consists of a membrane circuit, a threshold-and-fire
circuit, and excitatory and inhibitory synaptic circuits. The membrane circuit has second-order dynamics containing two
state variables Ui (a current-like variable) and Vi (a voltage-like variable), and shows oscillatory behavior mediated and
modulated by a summation of synaptic inputs Iin =

P
j IEPSCi,j

− P
j IIPSCi,j

.

(i) reducing the multiplication terms of the system
variables of the original system, and (ii) exponential
nonlinearity, which is an essential characteristic of
semiconductor devices.46

3.1.2. Subthreshold current of MOS FETs

The current-voltage relationships of metal-oxide-
semiconductor field-effect-transistors (MOS FETs)
operating in the subthreshold region are described
as follows:1

Ids,n = SIno exp
(

κnVg − Vs

VT

)

×
(

1 − exp
(
−Vd − Vs

VT

)
+

Vd − Vs

VE,n

)
(7)

Ids,p = SIpo exp
(−κpVg + Vs

VT

)

×
(

1 − exp
(

Vd − Vs

VT

)
+

Vs − Vd

VE,p

)
(8)

where Ids,n and Ids,p represent the currents of an
nMOS and a pMOS FET, respectively, Vg, Vd and
Vs the gate, drain, and source voltage, κn and κp the
capacitive coupling ratio from the gate to channel,
VT ≡ kT/q the thermal voltage (k: Boltzmann’s con-
stant, T : temperature, and q: electron charge), VE,n

and VE,p the Early voltages, S = W/L the aspect
ratio of MOS FETs (W : the channel width and L:

the channel length), and Ino and Ipo pre-exponential
currents.2

When subthreshold MOS FETs are saturated
(Vd − Vs ≥ 4VT ≈ 100mV at room temperature)
and the Early voltages VE,n and VE,p are sufficiently
larger than |Vds| = |Vd − Vs|, (7) and (8) can be
approximately rewritten as follows:

Ids,n = SIno exp
(

κnVg − Vs

VT

)
, (9)

Ids,p = SIpo exp
(−κpVg + Vs

VT

)
. (10)

Thus, the subthreshold currents of MOS FETs are
exponential functions of input voltages.

3.1.3. Lotka-Volterra oscillator circuit

The LV system consisting of one predator and one
prey is given in the following form:

ż1 = z1(r − z2), r > 0 (11)

ż2 = z2(z1 − 1) (12)

where z1 represents the prey population and z2 the
predator population, respectively, and r is a positive
constant. This system has a conserved quantity:

c = z1 + z2 − lnz1 − rlnz2 (13)

where c is a positive constant determined by initial
conditions. Thus the LV system is a conservative sys-
tem and has periodic solutions depending on the ini-
tial conditions.
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Fig. 3. Schematic of the Lotka-Volterra (LV) oscillator.

By applying the nonlinear transformation (5),
(11) and (12) are transformed into:

ẋ1 = r − b2 exp x2 (14)

ẋ2 = b1 exp x1 − 1 (15)

where b1 and b2 represent scaling constants. Equa-
tions (14) and (15) can be implemented into silicon
chips using the exponential current-voltage relation-
ships described by (9) and (10).

Figure 3 shows the schematic of the LV oscillator
circuit.46 Applying Kirchhoff’s current law at each
node with capacitance in Fig. 3, we can obtain the
following circuit dynamics:

C1
dUi

dt
= IUi − SInoexp(κnVi/VT ) (16)

C2
dVi

dt
= SInoexp(κnUi/VT ) − IVi (17)

where Ui and Vi represent the node voltages, C1 and
C2 the capacitance, and IUi and IVi the bias cur-
rent for a current mirror. When MOS FETs con-
tained in the LV oscillator circuit operate under
saturation, the circuit becomes a conservative sys-
tem, and thus shows oscillations depending on initial
conditions.

3.1.4. Dynamics of membrane circuit

We designed the membrane circuit by introducing
dissipation terms and diode-connected transistors

into the LV oscillator circuit, as shown in Fig. 2.
The dynamics of the membrane circuit is described
as follows:

C1
dUi

dt
= −g(Ui − Vrst) + Iin + ĪUi

−SInoexp
(

κ2
n

κn + 1
Vi

VT

)
(18)

C2
dVi

dt
= SInoexp

(
κ2

n

κn + 1
Ui

VT

)
− ĪVi (19)

where Ui and Vi represent the state variables, C1

and C2 the capacitance, g the conductance for the
transistor M11, Vrst the reset voltage, and Iin the
summation of the synaptic currents:

Iin =
∑

j

IEPSCi,j −
∑

j

IIPSCi,j (20)

where IEPSCi,j
and IIPSCi,j

represent the i-th post-
synaptic currents through the jth excitatory and
inhibitory synaptic circuits, respectively. Currents,
ĪUi and ĪVi are described as follows:

ĪUi = αIUi

(
1 +

VDD − Ui

VE,p

)
(21)

ĪVi = βIVi

(
1 +

Vi

VE,n

)
(22)

where IUi and IVi represent the bias currents for the
current mirror, VDD the power-supply voltage, and
α and β the dimensionless constants:

α =
(

1 +
VDD − Vg1

VE,p

)−1

(23)

β =
(

1 +
Vg2

VE,n

)−1

(24)

where Vg1 and Vg2 represent the gate voltages of M7–
M8 and M9-M10, which are determined by the bias
currents IUi and IVi . As a result of introducing (21)
and (22), the membrane circuit becomes a dissipative
system.

The equilibrium point of the membrane circuit,
(Uo, Vo), can easily be calculated, and the stability of
the point can be analyzed by the eigenvalues of the
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Jacobian matrix of the membrane circuit,

J =




−αIUi

VE,p
− κ2

n

κn + 1
IVo

VT

κ2
n

κn + 1
IUo

VT
−βIVi

VE,n


 (25)

=



− IUi

VE,p + VDD − Vg1
− κ2

n

κn + 1
IVo

VT

κ2
n

κn + 1
IUo

VT
− IVi

VE,n + Vg2



(26)

where IUo and IVo represent the equilibrium current
at the equilibrium point. It is assumed that the leak
conductance g is zero. We used diode-connected tran-
sistors M1 and M3 to obtain small coefficients for
IUo and IVo , and short transistors that have small
Early voltages for M7–M10 to obtain large coeffi-
cients for IUi and IVi . Consequently, the equilibrium
point becomes a focus, and the membrane circuit
exhibits damped oscillation in response to an input.
In this case, the circuit dynamics is qualitatively
equivalent to the membrane dynamics of the RFN
model near the equilibrium point.

3.2. Threshold-and-fire circuit

The threshold-and-fire circuit was constructed using
a comparator circuit and an inverter. When input
voltage Vi increases or decreases monotonously, the
circuit generates output voltage Vpulse, which can be
approximately described as follows:

Vpulse =

{
VDD Vi ≥ Vth + δVth, (27)

GND otherwise. (28)

where VDD represents a power-supply voltage, and
GND a ground voltage. Effective threshold voltage is
divided into a bias voltage for the comparator, Vth,
and a time-dependent hysteresis voltage δVth, which
is approximately described as follows:

δVth =
∫ T

0

dVi

dt
dt (29)

where T is an elapsed time since the voltage Vi has
passed over the bias voltage Vth, which is described
as follows:

T =




Cinv

Ibias
· (VDD − Vinv)

dVi

dt
> 0, (30)

Cinv

Ibias
· Vinv

dVi

dt
< 0. (31)

where Cinv and Vinv represent an input capaci-
tance and a reversal voltage of the inverter, respec-
tively, and Ibias is a bias current for the comparator.
In short, the threshold-and-fire circuit has hysteresis
due to charging or discharging the input capacitance
of the inverter.

3.3. Resonate-and-fire neuron circuit

We here describe behavior of the RFN circuit. Pulse
currents through excitatory or inhibitory synaptic
circuits change the voltage Ui instantaneously and
the trajectory of voltage oscillation of the membrane
circuit is disturbed. If Vi exceeds a threshold voltage
Vth, the threshold-and-fire circuit generates a spike
(a pulse voltage Vpulse) after a slight delay, which is
described by (30). Consequently, the transistor M11

turns on state, and then Ui is reset to the bias voltage
Vrst instantaneously. As a result of resetting Ui, Vi

decreases monotonously. Due to the time-dependent
hysteresis described by (31), weak noise and jitters
around Vth may not disturb threshold detection of
the RFN circuit. After that, Vi decreases, and Vpulse

is returned to 0. Therefore, the width of Vpulse is
brief C and the RFN circuit seems to fire a spike. It
can be said that such behavior of the RFN circuit is
qualitatively the same as that of the RFN model.

4. Results

We verified the performance of signal detection of
the RFN circuit with SPICE simulations. We used
the circuit simulator, T-Spice Pro, and the model
parameters of the BSIM 3v3 LEVEL 49 model for
the AMI 0.35µm CMOS process.

Through the following simulations, the supply
voltages were set at VDD = 1.5V, Vth = 850mV,
and Vrst = 750mV, the bias currents were set at
IUi = IVi = 10nA, and Ibias = 250nA, and the
capacitance were set at C1 = C2 = 1.2 pF. We used
pulse currents (width: 0.3 µsec) as synaptic inputs,
and the capacitance for excitatory and inhibitory
synaptic circuits were set at Cp = 0.02pF.

4.1. Response to excitatory inputs

Figure 4 shows typical behavior of the RFN circuit
in response to excitatory synaptic inputs. When a
pulse current (EPSC, amplitude: 300nA) that could
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(A)

(B)

(C)

(D)

(E)

Fig. 4. Responses to excitatory synaptic inputs, where
solid and dashed lines represent Vi and Ui, respectively.

not make the voltage Vi exceeded the threshold volt-
age Vth was fed into the circuit, a damped oscilla-
tion of the voltages Ui and Vi occurred, in which the
period of the oscillation was about 50µs (Fig. 4A).
When a pair of pulses (EPSCs) with an interpulse-
interval (IPI) in the range of 0 to 8.5µs was given

(A)

(B)

Fig. 5. Responses to inhibitory synaptic inputs, where
solid and dashed lines represent Vi and Ui, respectively.

into the RFN circuit, Vi exceeded Vth and the RFN
circuit generated a pulse voltage Vpulse, and then Ui

was reset to the bias voltage Vrst instantaneously.
Thus, the RFN circuit seemed to fire a spike sim-
ply. Figure 4B shows a response to a pair of pulses
with an IPI of 5µs. When we gave two pulses with
an IPI in the range of 45 to 55µs around the reso-
nance interval of the RFN circuit, the RFN circuit
also generated Vpulse. Figure 4C shows a response to
a pair of pulses with the IPI of 50µs. However, the
RFN circuit did not fire a spike when the IPI was in
other ranges, e.g. 30µs (Fig. 4D) and 70µs (Fig. 4E).

These results indicate that the RFN circuit can
act as a coincidence detector and a bandpass filter
for sequences of input pulses.

4.2. Response to inhibitory inputs

Figure 5 shows typical behavior of the RFN circuit
in response to inhibitory synaptic inputs. When an
inhibitory pulse current (IPSC, amplitude: −500nA)
was given into the circuit, a damped subthreshold
oscillation of Ui and Vi occurred as well as when an
excitatory pulse was given (Fig. 5A). The amplitude
of the oscillation increased with the amplitude of the
inhibitory synaptic input. When a strong inhibitory
pulse (amplitude: −900nA) was given, Vi exceeded
Vth as a result of a rebound effect of the inhibitory
input, as shown in Fig. 5B. Thus, the RFN cir-
cuit generated Vpulse and Ui was reset to Vrst after
a slight delay. These results are indicative of the
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property of the post-inhibitory rebound of the RFN
circuit.

4.3. Effects of additive white noise

We here consider the effects of white noise on the
circuit operation. It is suggested that a weak noisy
input induces a sustained subthreshold oscillation
in the RFN model.51 When we give a weak noisy
input εI(t) into the RFN model as described as
follows:

ż = (−ε + iw)z + εI(t) (32)

the noisy input induces a sustained oscillation, which
is described as follows:

z = I∗(w) exp(iwt) (33)

where I∗(w) represents the Fourier coefficient of the
I(t) corresponding to the frequency w, and |I∗(w)|
the average amplitude of the oscillation, as proven by
Izhikevich.51 As in the case of the RFN model, weak
noise induces a sustained subthreshold oscillation in
the RFN circuit. If white noise in the RFN circuit,
which has little effect on the equilibrium point and its
stability, the average amplitude of the oscillation can
be estimated in a similar way to (32) and (33). The
average frequency of the oscillation is nearly equal
to the natural frequency of the RFN circuit since
the power spectrum of the white noise is frequency
independent.

Although the white noise induces the fluctuation
of the voltages Ui and Vi, such fluctuation may not
affect the operation of the threshold-and-fire circuit
due to the time-dependent hysteresis described in
Sec. 3.2. Thus, the RFN circuit can operate correctly
even in the presence of the white noise.

4.4. Effects of background random
activity

We then consider the effects of background random
activity on the performance of the signal detection in
the RFN circuit. We employed a sequence of random
pulses as background activity. The IPI distribution
is Gaussian, the ratio of the standard deviation to
the mean of IPI is 0.1, and the amplitude of pulses
are 60 nA for excitation and −60nA for inhibition,

RFN

trigger input 

background random activity 

Fig. 6. RFN circuit under the influence of background
random activity. Open and closed circles are excitatory
and inhibitory synaptic circuits, respectively.

respectively (Fig. 6). It should be noted that such
random activity can be regarded as strong noise.

4.4.1. Resonance interval modulation

We investigated resonance interval modulation of the
RFN circuit under the influence of the background
random activity. The resonance interval of the RFN
circuit decreased with increase in the mean IPI of
the inhibitory random activity, and increased with
increase in the mean IPI of the excitatory random
activity, as shown in Fig. 7. This is because the
excitatory random activity increases the equilibrium
voltages (Uo, Vo), and then the equilibrium currents
(IUo , IVo), that is the RFN circuit is depolarized. In
contrast to the excitation, the inhibitory background
activity decreases the equilibrium voltages, and then
the equilibrium currents, that is the RFN circuit is
hyperpolarized. As shown in the Jacobian matrix
(26), the frequency of the subthreshold oscillation
depends on the equilibrium currents, and thus the
resonance interval changes.
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Fig. 7. Resonance Interval Modulation.
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RFN

background random activity 

synchronous doublets 

Fig. 8. RFN circuit with five excitatory synaptic cir-
cuits, in which each carries synchronous doublets embed-
ded in background random activity.

4.4.2. Robustness of frequency preference

We here describe how background random activity
affects the performance of the frequency preference
of the RFN circuit. We consider an RFN circuit with
five excitatory synaptic circuits, each of which car-
ries random pulses (the mean of IPI: 25µs) as back-
ground activity, and synchronous doublets to the
RFN circuit, as shown in Fig. 8.

The RFN circuit can detect synchronous dou-
blets with the resonance interval embedded in back-
ground random pulses. If the mean of IPI of the
background pulses is smaller than the resonance
interval of the RFN circuit, the background pulses
are filtered due to the band-pass characteristics of
the RFN circuit. Furthermore, if the mean interval
of the synchronous doublets is nearly equal to the
resonance frequency modulated by the background
random activity, the synchronous doublets can be
detected. Figure 9 shows that the RFN circuit can be
resonance with synchronous doublets given at about
300µs and 350µs even in the presence of the weak
subthreshold oscillation mediated by the the back-
ground random activity.

4.5. Influence of device mismatch

We further consider the influence of device mismatch
on the circuit properties of the RFN circuit. The
device mismatch may mainly affects the properties
of the membrane circuit. We assumed the varia-
tion of threshold voltage of transistors, ∆VTH, as
device mismatch, and evaluated how such variation

680
0 100 200 300 400 500 600 700 800

880

time (µsec)

U

(A)

880

time (µsec)

680
0 100 200 300 400 500 600 700 800

Timing of inputs (IEPSC)

Timing of output (Vpulse)

(B)

Fig. 9. Coincidence detection of synchronous doublets
embedded in background random activity.

spreads the equilibrium voltages and resonance inter-
val of the membrane circuit using Monte-Carlo simu-
lations. Focusing on symmetry in the membrane cir-
cuit (Fig. 2), we only considered the local variation of
the transistors comprising the membrane circuit, and
set the standard deviation of the threshold voltage
VTH between a pair of transistors (e.g. M1 and M3,
and M5 and M6), σ(VTH) = 1 mV. Figure 10 shows
the statical distribution of the equilibrium voltages
Uo and Vo. One of the influence of the variation of the
equilibrium voltages is on the variation of distance
between the equilibrium voltage Vo and the thresh-
old voltage of the threshold-and-fire circuit, Vth. This
influence can be reduced by tuning the ratio of the
variation and the distance. Another influence is on
the variation of the resonance interval, as shown in
Fig. 11. The ratio between the mean and standard
deviation of the resonance interval was calculated at
2.3%, and thus such influence may be not critical for
the frequency preference of the RFN circuit.

The influence of the device mismatch considered
here can also be reduced by enlarging the size of the
transistors comprising the RFN circuit. In addition,
MOS transistor scaling supports this approach since
the device mismatch of MOS transistors is generally
proportional to the oxide thickness, which decreases
with the scaling. The influence of device mismatch
may decrease with decreasing the oxide thickness due
to the MOS transistor scaling if the size of the RFN
circuit is constant. We can also estimate the local
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Fig. 10. Statical distribution of equilibrium voltages.

variation of device parameters as the oxide thickness
and the size of transistors are given. For instance,
the local variation of the threshold voltage can be
estimated as follows:

σ(VTH) ≈ ATH
tox√
LW

(34)

where tox represents the oxide thickness, L and
W the channel width and length, respectively, and
ATH = 1V a proportional constant at a standard
process. We assumed the oxide thickness tox = 8.0
nm in the Monte-Carlo simulations. Thus, if we want
to obtain σ(VTH) = 1mV, the area of a transistor
should be more than LW = 64 µm2 .

4.6. Estimated power consumption

The power consumption of the RFN circuit at a
steady state can be calculated as follows:

P = VDD · (IUo + 2IVo + IUi + IVi + 3Ibias) (35)

Fig. 11. Statical distribution of resonance interval.

where IUo and IVo represent the equilibrium cur-
rents of the membrane circuit, IUi and IVi the bias
currents for the membrane circuit, and Ibias the
bias current for the threshold-and-fire circuit. By
assuming the same parameters as used in the previ-
ous simulations, we measured the currents as follows:
IUo = 11.8nA, IVo = 12.8 nA, IUi = IVi = 10nA,
and Ibias = 500nA. Thus, the power consumption
was estimated at 2.34µW.

5. Summary and Concluding Remarks

In this paper, we have proposed analog integrated
circuit implementation of a resonate-and-fire neuron
(RFN) model. The RFN circuit has been derived
from the Lotka-Volterra (LV) oscillator circuit to
mimic the dynamical behavior of the RFN model:
the damped subthreshold oscillation, resulting into
the coincidence detection, frequency preference, and
post-inhibitory rebound. Due to such properties, the
RFN circuit can act as a coincidence detector, and
at the same time as a band-pass filter for a spike
sequence even in the presence of the additive white
noise and the background random activity. We have
also considered the influence of the device mismatch
on the circuit properties of the RFN circuit. Such
influence can be reduced by enlarging the size of
the RFN circuit, and the scaling of MOS transistors
is suitable for this approach. The typical operating
time-scales we used here are in the order of tens of
microseconds. Therefore, our circuit is insufficient for
dealing with natural signals in speech and visual pro-
cessing, in which time scales are in the order of mil-
liseconds. Our circuit would be applied to high-order
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neuromorphic processing using the event-based com-
putation, concerned with associative memory30 and
sequential coding.34

In addition, Izhikevich has recently suggested in
his literature that biological neurons are classified
into two categories; integrator and resonators.51 It
is interesting to reflect that cortical neurons act
as integrators or resonators depending on whether
they are excitatory or inhibitory, respectively. This
fact implies that integrators and resonators in bio-
logical neural network have a possibility to share
roles in information processing with each other. In
a similar way, the RFN circuit plays a complemen-
tary role to IFN circuits. Thus, the RFN circuit is
a candidate as essential component for large-scale
integration of functional networks of silicon spiking
neurons.
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