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Abstract

A compact complementary metal-oxide semiconductor (CMOS) cir-

cuit for depressing synapses is designed for demonstrating applica-

tions of spiking neural networks for contrast-invariant pattern classi-

fication and synchrony detection. Although the unit circuit consists

of only five minimum-sized transistors, they emulate fundamental

properties of depressing synapses. The results of the operations are

evaluated by both experiments and the simulation program with

integrated circuit emphasis (SPICE).
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1. Introduction

Silicon circuits that mimic the nervous systems of insects
and animals represent the future of neurocomputing. These
circuits can perform various neural functions because the
microstructures of a nervous system are replicated in their
silicon chips. A number of neural chips have been devel-
oped, such as silicon neurons that emulate cortical pyrami-
dal neurons [1], FitzHugh-Nagumo neurons with negative
resistive circuits [2], and artificial neuron circuits based
on byproducts of conventional digital circuits [3–5]. As
recent functional models of spiking neural networks tend
to use integrated-and-fire neurons (IFNs) rather than the
Hodgkin-Huxley-type neurons [6], neuromorphic engineers
have developed hardware neural systems with several types
of IFN circuits to investigate the effect of spike timing and
synchrony on the network’s computational properties, such
as competitive neural circuits with IFNs for processing sen-
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sory signals [7, 8] and learning circuits with spike-driven
synaptic plasticity [9, 10].

In addition to the IFNs, dynamic synapses have also
attracted the attention of neuromorphic engineers who fo-
cus mainly on the dynamic implications of the neurons.
Senn showed an easy way to extract coherence informa-
tion among cortical neurons by projecting spike trains
through depressing synapses onto a postsynaptic neuron
[11]. Moreover, a recent model of the layer IV circuitry,
which accounts for several contrast-dependent nonlineari-
ties in cortical responses, suggests that synaptic depression
contributes to solving the problem of contrast-invariant
orientation tuning [12]. Based on this suggestion, Bug-
mann showed that the strength of a time-averaged current
injected into the soma by using a spike train is independent
of its frequency, which implies that the response strength
of a target neuron depends only on the number of active
inputs [13].

Several CMOS circuits that emulate dynamic synapses
have been developed [14, 15]. These circuits used ca-
pacitors to obtain temporal properties of the dynamic
synapse, which prevents us from large-scale implementa-
tion of synaptic circuits for practical applications. In this
article we propose a compact CMOS circuit that emulates
the depressing properties of dynamic synapses. The cir-
cuit consists of five transistors without capacitors. We
also exhibit network circuits implementing the Bugmann’s
model for contrast-invariant pattern classification [13] and
Senn’s model for synchrony detection [11], to demonstrate
the properties of our synaptic circuit.

2. Analog CMOS Circuit for Depressing Synapse

A synapse whose conductivity changes based on the firing
rate or spike timing of presynaptic neurons is called a dy-
namic synapse [16, 17]. The change in weight of dynamic
synapses is caused by short-term changes in the trans-
mitter discharge and regeneration cycle at the terminal of
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presynapses rather than by learning at the network level.
These synapses produce excitatory postsynaptic potential
(EPSP) or inhibitory postsynaptic potential (IPSP) by in-
tegrating the output of the presynaptic neurons. A signal
is conducted to a postsynaptic neuron through EPSP and
IPSP. When the firing rate of the presynaptic neurons in-
creases so that the sequential changes in EPSP and IPSP
can no longer keep up with the input, the efficiency of sig-
nal conduction to the postsynaptic neurons drops. Because
presynaptic neuron output is depressed and conducted to
the postsynaptic neurons, such a synapse is called a “de-
pressing synapse” and a synapse acting inversely is called
a “facilitating synapse.”

Fig. 1 shows our MOS circuit for such a depressing
synapse constructed by a current mirror (M3 and M5)
and pMOS common-source amplifier (M2 and M4). When
there is no input (Iin =0), voltage Ve at junction A is zero
because of leak transistor M2. Therefore, transistor M1 is
on. When there is input (Iin > 0) that increases Ve, M1 is
turned off. Therefore, the current is mirrored to output
Iout through transistor M1.

Figure 1. Depressing synapse circuit with five minimum-
sized transistors and parasitic capacitance.

Because there is parasitic capacitance Ce at junction
A, the increase in Ve has a short-time delay. Therefore, M1

enters an on state for a short time, and the circuit outputs
spike current Iout. When the input current becomes zero
again, M2 discharges the capacitance Ce, and Ve returns to
zero. Remarkably, the mirror effect of the pMOS common-
source amplifier, which amplifies the value of additional
parasitic capacitance between the drain and gate terminal
of M4, increases this discharging time.

Now assume that the spike current is given at a short
interval, and that subsequent spikes enter before Ve returns
to zero. In this case, the amplitude of the output spikes
decreases when Ve increases. Because the current of tran-
sistor M2 increases monotonically when Vbias increases,
the time until Ve returns to zero decreases. By adjusting
voltage Vbias, it is thus possible to change the duration of
the depression. Notice that when Vbias is set at VDD, the

circuit behaved as a nondepressed synapse because Ve is
zero and M1 is always on.

It should be noted that our circuit implements only
the weight dynamics of the depressing synapse. However,
conventional analog memory devices, such as floating-gate
MOS (FGMOS) FETs with Fowler-Nordheim tunneling
electrodes [18], can easily be incorporated into our cir-
cuit. Namely, if M5 is replaced with a FGMOS FET, the
synaptic weight can be changed (through some learning)
independent of the weight dynamics. On the other hand,
if M2 or M4 is replaced with a FGMOS FET, the weight
dynamics can be changed and thus learned.

3. Experimental and Simulation Results

We fabricated a prototype circuit using a 1.5-µm scalable
CMOS rule (MOSIS, vendor: AMIS, n-well single-poly
double-metal CMOS process). Fig. 2 shows the layout of
a depressing-synapse circuit. The circuit took up a total
area of 35µm× 36µm.

Figure 2. IC layout of depressing synapse circuit (total
area of 35µm× 36µm with a 1.5-µm scalable CMOS rule).

Fig. 3 shows time courses of the output of the synapse
circuit for increasing input-spike intervals. The experimen-
tal conditions were VDD=5V, Vbias =0.1V, input spike
width=0.1ms, and spike amplitude=1µA. A load resis-
tance of 100MΩ was connected between the output termi-
nal of the circuit and ground to obtain the output current
Iout as the voltage Vout. Fig. 3(a) shows input voltage
Vin of transistors M3 ∼M5 that decreases from 5V to 3.7V
when the spike current is given. The first spike was given
at t=0. Subsequent spikes were given at t=10, 30, 60, and
120ms. When the inputs were given successively in a short
time (around 0 to 30ms in Fig. 3(a)), the amplitude of
the output pulse was depressed (Fig. 3(c)). As the interval
widened, Ve approached zero (Fig. 3(b)) and the amplitude
of the output pulse returned to the initial value.

2



Figure 3. Experimental results of depressing synapse cir-
cuit; (a) successive spike inputs, (b) degree of synaptic
depression, and (c) its outputs.

Fig. 4 shows the change in amplitude of the output
spike against the input firing rate. The leak voltage Vbias

was set at 0.1, 0.2, and 0.3V. As the spike frequency
increased, the amplitude of the output pulse decreased.
By increasing Vbias, the cutoff frequency was successfully
shifted towards the higher frequency.

Figure 4. Changes in amplitude of output of depressing
synapse circuit against firing rate of presynaptic neuron.

In the following subsections, we show applications
of the proposed circuit to spiking neural networks for
contrast-invariant pattern classification and synchrony de-
tection. Although these networks are designed to be useful
when a large number of depressing synapses are employed,
we constructed small-scale circuits to demonstrate only the
fundamental properties of the hardware neural networks.
As our circuit occupies an area of 35µm× 36µm even if we
use a 1.5-µmCMOS process, its large-scale implementation
is remarkably easy.

3.1 Application to the Bugmann’s Neural Network
for Contrast-Invariant Pattern Classification

Bugmann showed that the strength of a time-averaged
current injected into the soma using a spike train tends
to be independent of its frequency, which implies that the
response strength of a target neuron depends only on the
number of active inputs [13]. We demonstrate it here using
our depressing synapse circuits.

Let us assume a simple circuit, as shown in Fig. 5. The
circuit is designed based on Bugmann’s neural network.
The right part represents a leaky IFN and the left part
represents its dendrite. The IFN consists of a membrane
capacitance (C1), a diode-connected leak MOS transistor,
and a threshold detector (Vth). In the Bugmann’s model,
an IFN is used to determine whether the membrane po-
tential exceeds a given threshold value or not. In this
sense, the functional behaviour of the model will not be
changed, no matter what types of IFNs are used. So, here
we employed one such simple IFN circuit.

Figure 5. Experimental setups for pattern classification
and synchrony detection.

The IFN accepts spike inputs from excitatory neurons
through depressing synapses. The IFN outputs a spike
when its EPSP>Vth, and resets the EPSP after the firing.
In this setup, average values of the EPSP increase in
proportion to the number of presynaptic active neurons.
Therefore, it can detect the number of presynaptic active
neurons by setting appropriate threshold Vth corresponding
to the number of active neurons. On the other hand,
the EPSP also increases in proportion to the firing rate
of spiking neurons. Therefore, ability to discriminate the
number of presynaptic active neurons largely deteriorates
if the firing rate is not at a constant value.

It has been shown that this discrimination performance
is improved by using the depressing synapse [13]. If input
spikes are given to the depressing synapse successively in
a short period, the efficiency to increase the EPSP per
spike drops. Even if the number of input spikes increases
with an increase in the firing rate, the value of EPSP does
not dramatically change because the efficiency per spike is
lowered by the synaptic depression. Namely, the discrimi-
nation performance of the network tends to be independent
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of firing frequency. To demonstrate this, we construct a
network in which four synapse circuits are connected to
the IFN circuit. We compared the operation of the neuron
circuit with nondepressed and depressed circuits as the
number of active presynaptic neurons increases (Fig. 6).
In Fig. 6, N represents the number of active inputs. In
the case of the nondepressed synapse (Vbias =5V, and it
is labelled as NDS in the figure), the average value of the
EPSP increased monotonically as the firing rate of postsy-
naptic neurons increased. The value also increased as N
increased. On the other hand, in the case of the depressed
synapse (Vbias =0.2V, labelled as DS in the same figure),
the EPSP increased nonmonotonically as the firing rate of
postsynaptic neurons increased. Now, we define the firing
threshold of the IFN as Vth =1.8V. The firing rates when
the EPSP exceeded the threshold to the number of active
neurons were plotted in Fig. 7 for both depressed (DS) and

Figure 6. Changes in EPSP of IFN against the number of
active presynaptic neurons and their firing rates.

Figure 7. Results for dependence of IFN on the firing rate
of presynaptic neurons (4 neurons).

nondepressed (NDS) synapse circuits. The result indicates
that the dependence of the postsynaptic neuron with de-
pressed synapses on presynaptic firing rates is smaller than
that of nondepressed synapses.

This difference becomes more apparent when N in-
creases. To confirm it in a large-scale network, SPICE sim-
ulation was conducted for the network having 100 synapses.
As input, a pulse with pulse amplitude of 1 nA and pulse
width of 10µs was given. The time constant of postsy-
naptic neuron was set around 2ms. The threshold was set
at the value of the EPSP produced by 70 active neurons
with a firing frequency of 5 kHz. The values of threshold
Vth were 0.2V when the depressing synapse was used and
2.0V when conventional synapse was used. The result is
shown in Fig. 8. The firing rate when the EPSP exceeded
the threshold to the active neuron for the first time was
plotted.

Figure 8. Large-scale simulation results (100 neurons) for
same experiments shown in Fig. 7.

3.2 Application to Senn’s Neural Network for Syn-
chrony Detection

Senn demonstrated an easy way to extract coherence infor-
mation among cortical neurons by projecting spike trains
through depressing synapses onto a postsynaptic neuron
[11]. We demonstrate the extraction of coherent informa-
tion using our depressing synapse circuits.

Let us consider the same IFN as shown in Fig. 5. We
use burst neurons as inputs to the IFN, as in Senn’s original
work. During a burst input, the output current of the
depressing synapse circuit rapidly decreases for successive
spikes due to the increase of Ve and its slow recovery. But
during a nonbursting period, Ve has time to be 0, and
this results in a strong EPSP at the onset of the next
burst. If we compare this dynamic response with that for a
nondepressed synapse evoking on average the same EPSP,
the depressed synapse will have a larger response at the
burst onset and a smaller response toward the end of the
bursts.
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Fig. 9 shows the response of the EPEP with bursting
inputs (a) for a nondepressed synapse (b) and depressed
synapse circuit (c). Amplitudes of bursting spike inputs
were set at 1µA for depressing synapses and 600 pA for
nondepressed synapses, which evoked on average the same
EPSP (50mV). This result ensures that the EPSP caused
by the depressed synapse circuit has a larger response
at the burst onset, as compared with the nondepressed
synapse circuit.

Figure 9. Responses of EPSP for single burst input (a) via
nondepressed (b) and depressed synapse circuits (c).

Now we demonstrate that the depressing synapse cir-
cuit is able to detect the synchrony during the burst times.
We use two bursting neurons as the input of the IFN
that receives the burst inputs through depressed or nonde-
pressed synapses. Figs. 10 and 11 show the results. When
the input bursts are not synchronized (Figs. 10(a) and (b)),
the peak EPSPs evoked by nondepressed (Fig. 10(c)) and
depressed synapses (Fig. 10(d)) were both around 0.1V.
But when the input bursts are synchronized (Figs. 11(a)
and (b)), the peak EPSP evoked by depressed synapses
(Fig. 11(d)) was significantly larger than that of the
nondepressed synapses (Fig. 11(c)). Therefore, defining
an appropriate threshold Vth of the IFN—for example,
Vth =130mV in the experiments—the IFN with the de-
pressing synapse circuit can fire when the burst inputs are
synchronized.

4. Conclusion

We have designed and fabricated an electronically imple-
mented depressing synapse. The circuit was designed using
only five minimum-sized transistors and did not require a
capacitor to enable its temporal property. As a result, the
circuit took up a total area of 35µm× 36µm with a 1.5-
µm scalable CMOS rule (MOSIS, vendor: AMIS, n-well
single-poly double-metal CMOS process). The experimen-
tal results indicated that the depressing synapse circuit
worked well in an actual environment with realistic config-
urations, and suggested further potential applications to

Figure 10. Responses of EPSP for asynchronous burst
inputs [(a) and (b)] via nondepressed (c) and depressed
synapse circuit (d).

Figure 11. Responses of EPSP for synchronous burst
inputs [(a) and (b)] via nondepressed (c) and depressed
synapse circuit (d). EPSP evoked by depressing synapse
detects synchrony when EPSP>Vth.

large-scale spiking neural networks with depressed and
nondepressed synapses. With the synapse circuit, we
demonstrated two functional neural networks performing
contrast-invariant pattern classification and synchrony
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detection using the simulation program with integrated
circuit emphasis (SPICE).

Before integrating large-scale spiking neural networks
with synapse circuits, we have to consider device mis-
matches of silicon devices on VLSIs. Namely, if multiple
depressing-synapse circuits were implemented on the same
wafer, the values of parasitic capacitances might differ
from each other. This prevents us from developing applica-
tions that require precise matching among CMOS devices.
For instance, the two network-level applications (contrast-
invariant pattern classification and synchrony detection)
are not very tolerant to the variability among CMOS de-
vices. These applications were introduced to “demon-
strate” our circuit where the computational function of the
circuit was qualitatively equivalent to that of neural models
for pattern classification and synchrony detection. How-
ever, actual neural systems work very well without such
precise matching among neural devices (neurons, synapses,
etc.). When this mechanism becomes clear, our subthresh-
old CMOS circuits certainly will have the advantage of its
compactness and low-power dissipation, as compared with
conventional neural circuits.

At present, it seems to be too early to use neuromor-
phic devices for “real” applications (and of course to create
its specs) because we do not have “true” neural models
that overcome the problem of mismatches between neural
tissues for reliable information processing. But attempts to
incorporate computational neural models with integrated-
circuit engineering may give us possible (but important)
cues for designing novel neural circuits and devices, and are
thus necessary for developing future neuromorphic VLSIs.
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Fig. 1 Depressing synapse circuit that consists of five minimum-sized transistors
and a parasitic capacitance.
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Fig. 2 IC layout of the depressing synapse circuit (a total area of 35 µm x 36 µm
with a 1.5-µm scalable CMOS rule).



0.1 0.20

5

4

5

2.5

0
1

0.5

0

V
in

(V
)

V
e

(V
)

V
ou

t(
V

)

time (s)

(b)

(c)

(a)

Fig. 3 Experimental results of depressing synapse circuit; (a) successive spike inputs,
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