
©2016 Old City Publishing, Inc.
Published by license under the OCP Science imprint,

Int. Journ. of Unconventional Computing, Vol. 12, pp. 169–187
Reprints available directly from the publisher
Photocopying permitted by license only a member of the Old City Publishing Group.

Motion Vector Estimation of Textureless
Objects Exploiting Reaction-Diffusion

Cellular Automata

MIHO USHIDA1, ALEXANDRE SCHMID2, TETSUYA ASAI1,∗,
KAZUYOSHI ISHIMURA1 AND MASATO MOTOMURA1

1Graduate School of Information Science and Technology, Hokkaido University,
Kita 14, Nishi 9, Kita-ku, Sapporo 060-0814, Japan

2Microelectronic Systems Laboratory, Ecole Polytechnique Fédérale de Lausanne,
Lausanne CH-1015, Switzerland

Received: February 8, 2016. Accepted: February 15, 2016.

Conventional motion estimation algorithms extract motion vectors from
image sequences based on the image’s local-brightness differences in
consecutive images. Therefore, motion vectors are extracted along the
moving edges formed by moving objects over their background. How-
ever, in the case of “textureless” moving objects, motion vectors inside
the objects cannot be detected because no brightness (texture) differ-
ences exist inside the object. Severe issues may incur in motion-related
imaging applications because motion-vectors of vast (inner) regions
of textureless objects can not be detected, although the inner part is
moving with the object’s edges. To solve this problem, we propose an
unconventional image-processing algorithm that generates spatial tex-
tures based on object’s edge information, allowing the detection of the
textures motion. The model is represented by a 2-D crossbar array of a
1-D reaction-diffusion (RD) model where 1-D spatial patterns are cre-
ated inside objects and aggregated to form textures. Computer simu-
lations confirm the approach, showing the formation of textures over
approaching objects, which may open applications in machine vision
and automated decision systems.

Keywords: Texture generation, cellular automata, reaction-diffusion systems,
unconventional image processing

∗ Contact author: E-mail: asai@ist.hokudai.ac.jp

169

170 MIHO USHIDA et al.

1 INTRODUCTION

Motion estimation has initially been developed as a video compression tech-
nique [1]. The limitations of the human visual system have been exploited
to enhance performances, specifically accepting a certain level of insensi-
tivity of human observers to spacial or temporal artifacts within a streaming
video. Motion estimation has recently been applied in various machine-vision
applications, such as anomaly detection, game interfaces, hand gesture user
interfaces [2], and image stabilization [3]. This technology has attracted sig-
nificant attention in recent years, [4–6].

The block-matching method is frequently used in motion vector estima-
tion algorithms to determine the movement of an object in a video sequence
[7]. Block-matching is intrinsically based on variations in brightness of
identical or shifted regions (blocks) in consecutive images. This constraint
becomes an issue when attempting to detect the motion of textureless objects;
motion vectors cannot be detected, except at the object boundaries (Fig-
ure 1). For example, as illustrated in Figure 1(a), when a completely black
board moves over an undetermined background, it is not possible to identify
whether the moving object is a board or only its frame (boundary only) using
the motion vectors extracted from classical algorithms. Considering the nat-
ural scene illustrated in Figure 1(b) at frame n and followed by Figure 1(c) at
frame n + 1, motion vectors can only be identified from zones of the moving
bear which have boundaries towards their surroundings, i.e., the body and
some features inside the head; over textureless zones such as the bear belly,
it is not possible to identify whether the moving object is the entire object
(belly) or only its boundary only using the motion vectors extracted from
classical algorithms. As a result, the motion vector field is relatively sparse
(Figure 1(c)), which results in a low number of important clues generally
necessary for motion classification tasks. In order to extract dense motion
vector fields, also the inside of moving objects should be identified as mov-
ing and accordingly assigned a motion vector. Specifically, this rule should
also apply to textureless object which have an homogeneous luminance infor-
mation over large zones located inside moving objects. This principle is illus-
trated in Figure 1(b) at frame n and followed by Figure 1(d) at frame n + 1
where a dense motion field of motion vectors is extracted, also inside homo-
geneous areas such as the bear’s belly.

Objects without texture may be many in an image or video sequence, due
to incorrect environmental conditions leading to over or under-exposed areas,
low image precision encoding (8-bit, or lower), but in majority resulting from
the nature of recorded objects themselves, e.g., flat object surfaces (paper,
sports ball which appears flat in 2D image acquisition, etc.), uniform back-
grounds (wall, curtains, etc.). Generally, these conditions may be expected

MOTION VECTOR ESTIMATION OF TEXTURELESS OBJECTS 171

(a) (b)

(c) (d)

FIGURE 1
Concept of motion vector extraction. (a) Applying classical motion vector extraction techniques,
motion vectors (purple arrows) of textureless objects (black square) that can be detected by
conventional motion-estimation algorithms (gray squares depict the initial location of the mov-
ing object). Concept of motion vector extraction from a natural scene, (b) frame n of a video
sequence, (c) frame n + 1 including sparse vectors extraction using classical techniques, and
(d) frame n + 1 including dense vectors extraction using the proposed reaction-diffusion based
technique

in computer vision applications, where the quality of the acquired image
can not always be guaranteed, in contrast to the initial movie video applica-
tions for which motion estimation algorithms were developed. Among com-
puter vision applications, machine-vision applications have a high potential
of growth, considering the expanding market of embedded systems which are
equipped with low-cost cameras [8], e.g., driven by cellular phones. In such
applications, motion vector fields are used as input to subsequent process-
ing such as classification or creation of information content (tagging) from
acquired data, and enabling automated decision-taking processes [9]. Reli-
ably determining the correct motion vector field of each moving object in
a scene is a key factor. Application examples include processing of three-
dimensional acquired video scenes, such as surveillance and multi-object
tracking in busy environments such as city area and road safety monitoring,
collision avoidance in mobile systems (automotive or new robotic applica-
tions), novel medical imaging aiming at supporting robotic assisted surgery
or treatment (tumor irradiation), [10].

In order to be able to determine motion vectors covering the entire surface
of a moving textureless object, we propose to assign texture to these objects.

172 MIHO USHIDA et al.

A texture inside an object is expected to follow the object’s movement and
assist the process of motion estimation. The reaction-diffusion (RD) model
is selected to assign texture to textureless objects. The RD is a well-known
model for spatial pattern generation [11, 12]. It can be used to simulate the
diffusion of chemical activators and inhibitors, and the interactions between
activators and inhibitors. These dynamics can generate the stable striped or
spotted patterns observed in nature, and covering the surface (skin or fur) of
the bodies of animals, for example.

The operation principle, limitations and possible hardware implementa-
tion of a RD based pattern generation concept enabling detecting motion
vectors on the boundary and the interior of moving objects, are discussed
in the following. Section 2 presents and motivates the one-dimensional RD
model used in this research. Section 3 presents simulation results, consider-
ing different conditions of the background. Finally, Section 4 discusses and
summarizes the results.

2 ALGORITHMS AND METHODS

2.1 Reaction-diffusion in a two-dimensional discrete field
The RD process is defined in its fundamental form as operating over a contin-
uous spacial domain. Following the procedure described in [13], the dynam-
ics of the RD process is adapted to support the diffusion of activators and
inhibitors in independent discrete fields, which are eventually convoluted into
a 2D array of cells. The variation of concentration between activators, u, and
inhibitors, v, determines each cell’s state at the spacial location (x , y). The
diffusion equations are integrated over time δt . Finally, the subsequent state
of a cell is determined from the value of the sigmoid function of (u − v). The
dynamics of the diffusion process is expressed as follows.

∂u(r, t)

∂t
= Du∇2u(r, t),

(1)
∂v(r, t)

∂t
= Dv∇2v(r, t),

where Du represents the diffusion coefficient of the activators and Dv rep-
resents the diffusion coefficient of the inhibitors, r = (x, y) represents the
two-dimensional field, and t is time. The dynamics of the reaction process is
expressed as follows.

u(r, δt(n + 1)) = v(r, δt(n + 1))

= f (u(r, δt · n) − v(r, δt · n) − c), (2)

MOTION VECTOR ESTIMATION OF TEXTURELESS OBJECTS 173

f (x) = 1

1 + e−βx
,

where n represents the time step, β represents the measure of steepness of the
function, and c represents an offset value. The sequential process of diffusion
and reaction is named “one update” in the following.

The impulse response of a diffusion equation is expressed as a Gaus-
sian. Consequently, a difference of Gaussian (DoG) represents the impulse
response of (u − v). The iterative application of the this DoG at each update
governs the formation of striped or spotted patterns in a two-dimensional
field, depending on the values of parameters c and (Du/Dv).

The possibility of applying the RD algorithm as a preprocessing step of
motion estimation in real-time embedded applications reflects into specific
constraints that must be handled at the algorithmic and hardware levels. In
this Section, we consider algorithmic adaptations that are required to support
reaction-diffusion applied to consecutive real images extracted from a video
streaming input source.

2.2 Reaction-diffusion applied to a video streaming input
The high-level process-flow of the proposed motion estimation system is
first presented. We consider video acquisition typically using a commer-
cial imager that consecutively samples image frames. In this study, a stan-
dard video acquisition rate is considered at 30 fps (frame per second), while
high-speed video acquisition is considered at 1,000 fps. The resulting video
stream is sent as successive frames to a preprocessing unit which achieves
an iterative image filtering process aiming at creating textures inside texture-
less objects. In a real-time system, one new result must be delivered by this
module at the video acquisition rate. The algorithms and hardware methods
applied in this block are the core of this study. Finally, the result of two con-
secutive textured frames is processed using a classical block matching algo-
rithm which searches the destination location of every block of 3 pixels by 3
pixels from the previous textured image within the eight possible first neigh-
bors plus its unchanged location from the current textured frame. The final
result consists of a field of vectors of amplitude limited to one pixel. Hence,
as a direct impact, in this research, only a small amplitude of the motion
of objects between two frames is tolerated, which translates into constraints
in term of the usage of a high-speed camera or a slow motion of objects in
the field of view. This constraint has been determined as a proof-of-concept
acceptable simplification and does not constitute any intrinsic limitation to
the generality of the proposed methods.

Reaction-diffusion algorithms used in still image applications are gen-
erally based on a Carthesian coordinate system that matches digital image

174 MIHO USHIDA et al.

acquisition, representation and storage, and hence, diffusion is only consid-
ered along two orthogonal axis, i.e., four possible spacial directions within a
two-dimensional diffusion field. Texture patterns are formed in consecutive
applications of the RD algorithm, using the luminance information of objects
as the origin of the first RD step (update), and then using the consecutive
results as the origin of the next RD updates. Consequently, after stability is
reached, striped or spotted patterns have formed around and inside initial
objects, and do not evolve in any futher update. The process is non-linear,
and is not algorithmically reversible. The dynamics of pattern formation in a
one or two-dimensional array governed by RD is detailed in [13] and is not
repeated here.

Additional techniques pertaining to the two-dimensional RD process may
be considered, such as bilateral filtering of the source image to suppress
noise, temporal amplification of the β factor of the sigmoid function, i.e.,
gradual increase of β in consecutive updates, spacial amplification of β

depending on eight surrounding pixels, the consecutive usage of spacial
amplification of β followed by the usage of a stable value of β. While each of
these technique has its own set of advantages over the others in terms of sta-
bility of the patterns, correct generation inside and outside objects, sensitivity
to parameters, and hardware resources, none appears to exhibit a determinant
benefit in all conditions.

Remarkably, the generation of patterns can be guided. Since the RD oper-
ation uses object edges to generates patterns, the presence or insertion of
patterns may serve as a way to control the RD pattern generation process
of the next frame. In synthetic images, this property can be used to con-
trol or limit the generation of patterns to the inside of a selected object, by
inserting a striped background (i.e., outside the object) of carefully selected
spacial orientation and frequency, for instance, that will prevent the gener-
ation of any other pattern, as it corresponds to a stability state of the RD
process.

Motion detection finds practical applications from processing consecu-
tive images forming a video stream that are acquired from an image sensor.
The modern market of image sensors is dominated by CMOS image sen-
sors, mostly targeting the cheap consumer product market segment. It is thus
important to consider non-idealities of the image sensors, which are briefly
reviewed in the following, in order to assess their potential adverse effects
to the image processing. All types of semiconductor image sensors suffer
from systematic and random noise adverse effects resulting from pixel-level
non-idealities. Such pixel-level random noise effects include dark-signal-
non-uniformity (statistical variation of the photodetector dark current), pho-
toresponse non-uniformity (random pixel gain error), pixel-response non-
linearity, pixel temporal noise, and also offset-fixed-pattern-noise (spacial

MOTION VECTOR ESTIMATION OF TEXTURELESS OBJECTS 175

variation of pixel response). Guaranteeing that the random component of
CMOS image sensor noise be limited below the quantization level of the
imager analog-to-digital converter (ADC) is theoretically and technically
possible within reasonable specifications, but is a process that requires trad-
ing off with other technical specifications, e.g., frame rate, pixel size or ADC
resolution, and which eventually severely impacts the product marketabil-
ity. In addition, some contribution of the random pixel noise is content-
dependent, e.g., variable within dark versus bright zones of an image. In prac-
tical terms, even high-quality imagers result from a trade-off in their speci-
fications that may advantage high-frame rate or high spacial resolution to
the detriment of thorough pixel-noise suppression. Eventually, most imagers
acquire images that are expected to be observed by humans whose eyes can
not perceive random pixel noise that may even simultaneously alter many
pixels by a few percent in their intensity. Also, this level of noise may not
disrupt the majority of machine vision processing, or may be filtered using
conventional methods, in case of necessity. The presence of significant resid-
ual pixel-noise in commercial imagers can be easily evidenced by subtraction
of supposedly identical consecutive still images.

In contrast to human eye processing, two-dimensional RD processing of
consecutive images in a video stream proves to be extremely sensitive to pixel
noise, even at the lowest possible intensity, i.e., equivalent to one LSB. Pixel-
noise diffuses and is amplified by the RD process, which hence propagates
additional unwanted effects to neighboring pixels.

The sensitivity of two-dimensional RD to different levels of noise inten-
sities injected into a synthetic image consisting of a square with one point in
its center, are presented as an illustrative example in Figure 2. The top-left
image shows the stabilized patterns formed inside the square in absence of
any pixel noise. All eight other images include pixel-noise at different inten-
sity and different spacial locations, clearly evidencing the development of
different patterns. Since pixel-noise is random, the stabilized pattern result-
ing from the RD process can not be predicted, and clearly depends on the
initial object as well as noise.

The adverse effect of pixel-noise inducing unpredictable patterns in con-
secutive identical image zones is presented in Figure 3, [14]. The fingers
only slightly move towards the left from frame 10 to frame 11, conforming
the constraint of a high-speed video acquisition (1,000 fps) or a low-speed
motion of the objects; in this case, a high-speed camera is used. The resulting
motion vector field confirms the correct generation of motion vectors inside
the fingers, also including regions of almost homogeneous intensity. The inlet
named finger is a zoom into a dark border area of the small finger, and confirm
the generation of the motion-vector field represented as arrows that generally
point to the left. The unwanted effects of noise is observed inside objects

176 MIHO USHIDA et al.

FIGURE 2
Sensitivity of two-dimensional RD. The image located at top-left is generated from an input
without noise; the others are generated from an identical input (acquired image), however includ-
ing different levels of noise

FIGURE 3
Snapshot of two-dimensional RD preprocessing (frame=10 and frame=11), and corresponding
motion estimation (motion vector) showing globally correct results inside the finger (finger, red
inlet) and globally incorrect results in the background (background, blue inlet); motion vectors
are represented as arrows, some of which are highlighted in purple

MOTION VECTOR ESTIMATION OF TEXTURELESS OBJECTS 177

(fingers), but can be best identified comparing the black background of the
two textured images. Due to the presence of pixel-noise, the spotted pat-
terns that develop in the background are different within the two consecutive
frames resulting in the unwanted detection of an inhomogeneous motion-
vector field by the block-matching algorithm, i.e., consisting of motion vec-
tors apparently pointing into random directions, which is observed in the inlet
named background. Also, some blocks located inside the fingers are identi-
fied to move to the bottom, which is interpreted as incorrect in consideration
of the rest of the motion-vector field.

The texture-generation algorithm based on the two-dimensional RD pro-
cess can be improved taking benefit of the possibility of guiding the gen-
eration of patterns by overlaying an existing stabilized pattern over the
new image that must be preprocessed. This feature is achieved by adding a
weighted version of the pattern resulting from the RD of the previous frame,
n − 1, to the new frame, n, prior to processing to RD of frame n. The blend-
ing rate (BR) parameter determines the weight applied to each pixel of the
pattern generated at frame n − 1, and which is added to current frame, n, as
a seed guiding the new RD pattern generation.

Motion vector estimation results achieved by adding this preprocessing
technique are shown in Figure 4, presenting two examples, namely a fin-
ger moving to towards the left (Figure 4(a)), and a toy box approaching the
camera from a frontal direction (Figure 4(b)). Two consecutive frames and
their RD processing and motion vector extraction are shown in both cases.
These examples contain the results of RD processing produced using an iden-
tical value of BR= 0.02. Comparing Figure 3 with Figure 4(a) confirms that
motion-vector estimation errors in the background are significantly reduced.
A high frame-rate, e.g., 1,000 fps is observed to promote stability of the pat-
terns both inside and outside textureless objects. Nevertheless, the analysis
of Figure 4 (a) and (b) shows the necessity of adjusting parameter BR with
respect to the presence or absence of textures in the images’ moving objects
and backgrounds. Consequently, the method improves the accuracy of motion
vector generation, but proves extremely sensitive to parameter BR, which
optimal value is strongly content-dependent. In addition, this method oper-
ates in time-domain and requires extra hardware consisting of a frame buffer
storage.

Consequently, the presence of pixel-noise in commercial imagers consti-
tutes a fundamental constraint which disqualifies the usage of two-dimensio-
nal RD for generating predictable patterns that are suitable to motion-vector
extraction. Clearly, the algorithms must be adapted to support some level of
imperfection of commercial image sensors, since expecting image sensors
exempt from any random noise is not reasonable.

178 MIHO USHIDA et al.

(a)

(b)

FIGURE 4
Snapshot of two-dimensional RD preprocessing and motion estimation, using processing by
addition of the previous frame RD result. Left image: captured image, central image: RD image,
and right image: motion vector field, similar to the enlarged vectors in Figure 3, right. Two
examples are presented, and for each, the results of two consecutive frames are shown. (a) fingers
moving towards the left, (b) a toy box approaching in front

2.3 One-dimensional reaction-diffusion
As observed in Figure 2, diffusion simultaneously occurs in all direc-
tions in a two-dimensional field, thereby creating complex patterns. A one-
dimensional-based RD process for motion estimation is presented in the fol-
lowing as a method enabling the control of noise diffusion.

One-dimensional RD processing of an image prescribes that the RD
process be independently applied to orthogonal image directions. In a
two-dimensional RD process, diffusion occurs in a non-restricted two-
dimensional diffusion field. In contrast, in a one-dimensional RD process,
diffusion is limited to a two-way diffusion field. The equations governing the
one-dimensional algorithm are Equation 1 and Equation 2, but in the one-
dimensional case r = x . This limitation also applies to pixel-noise compo-
nents. As a result, the unwanted pixel-noise contribution is constrained in
a more severe manner in a one-dimensional RD process, where options to

MOTION VECTOR ESTIMATION OF TEXTURELESS OBJECTS 179

zone of black pixelszone of white pixels zone of white pixels
edgeedge

FIGURE 5
Development of a one-dimensional RD waveform without additional filter processing

create new unwanted stripes or spots are limited by the smaller number of
potentially participating or available neighbors, and the existence of legit-
imate stripes, corresponding to neighbors which are not available to par-
ticipate in the formation of an unwanted stripe. Intuitively, pixel-noise has
less opportunity to diffuse in a zone that offers premises for developing an
unwanted stripe or spot.

In order to support the one-dimensional RD method, each row of an image
is independently processed by the algorithm. Since movement may occur into
any direction, columns must also be considered following the same indepen-
dence criterion. Eventually, the results may be aggregated when stability is
reached.

Hence, one-dimensional RD has a significant merit in its inherent con-
trol and limitation of noise diffusion. A second merit lies in a less complex
hardware implementation. In the following, we describe the one-dimensional
process, its control of noise as the adapted version of RD to be used for
motion-vector generation.

A one-dimensional RD process is shown in Figure 5, where the horizon-
tal axis represents the pixels in one row of an image, while the vertical axis
presents the update number which is considered until stability is observed
reached, i.e., at or prior to update 21. The image source of the row presents

180 MIHO USHIDA et al.

a black stripe located in the middle of the row over a white background
including very light pixel-noise. Following RD theory [13], edges initiate
the propagation of stripes, which is visible from update 1 through update 6.
However, very clearly observable from update 4, noise impacts on the proper
generation of further stripes, creating an inhomogeneous pattern including
high-amplitude high spacial frequencies. In addition, in absence of noise, the
one-dimensional RD process appears very robust and generates stable pat-
terns which may in turn cause inconsistent conditions, specifically in regions
where stripes generated by different object edges get in close vicinity without
matching the spacial phase of each other. Expressed with more detail, a step
function is expected to generate a stable pattern consisting of a square wave
representing black and white pixels. The stable spacial frequency of the wave
is entirely determined by the parameters of the system, and can be derived
following the procedure explained in [13]. In a real image case where several
edges are expected in the image, several waves are created and interfere. For
example in Figure 5, two edges separate the central black zone with respect
to the white surrounding background. Consequently, the waves of fixed spa-
cial frequency meet in the middle of the of the black zone. Generally, the
wave generated from the left-hand size and right-hand side edges are likely
out of phase, creating an inconsistent condition where interference manifest
itself as an oscillation of high spacial frequency. Following an identical pro-
cess, waves propagating along the white zones are also likely to collide and
interfere due to their phase difference and to the existence of a boundary con-
dition that dictates continuity between the left-end and right-end of a row.
This represents the most likely situation, unless synthetic images have been
specifically prepared to avoid the issue. Consequently, an additional filter-
ing step is required which aims at inhibiting the influence of noise, and also
create a temporal break of stability to let the patterns reorganize in a way
that cancels inconsistencies. An additional diffusion filter is inserted into the
process flow; the diffusion has no subtraction or amplification. The filter is
applied every third iteration of the RD process, starting from the first update,
enabling the development of a regular pattern where the influence of noise
has vanished, as presented in Figure 6.

The algorithm proposed in this paper processes a two-dimensional input
image. The image is first reorganized into a one-dimensional format, namely
consisting of x (horizontal, rows) and y (vertical, columns) arrangements.
These arrangements are then repeatedly processed by one-dimensional RD.
Finally, they are multiplied with each other. Subsequently, block matching
may take place, and estimates the motion vectors from the preprocessing
results of consecutive frames.

Simulation results obtained using the proposed algorithm after stability is
reached are shown in Figure 7. The input image includes noise. Figure 7 (a)

MOTION VECTOR ESTIMATION OF TEXTURELESS OBJECTS 181

FIGURE 6
Development of a one-dimensional RD waveform with additional filter processing every third
updates. An arrow on the vertical axis indicates the updates requiring filter application (strict
diffusion), while all other updates include RD

shows the result without additional diffusion filter processing. Clearly, the
generated texture is disordered by the influence of noise, in spite of using a
one-dimensional RD process. Figure 7 (b) shows the result with additional
diffusion filter processing. An ordered texture has been generated while
noise has vanished, demonstrating a clear improvement over the result of
Figure 7 (a).

3 SIMULATION RESULTS

The suitability of the proposed algorithm to generate stable and noiseless
patterns is shown in Section 2. Section 3 discusses its applicability in real
conditions, using computer simulations. In the following, simulation results
considering various background conditions are explored and discussed.

3.1 Uniform background
Simulation results considering a uniform (black) background and a white
square moving object are shown in Figure 8, at three instants, each sepa-
rated by ten frames. Texture is generated from the boundary of the square.

182 MIHO USHIDA et al.

FIGURE 7
Difference in the texture generated by the proposed algorithm consisting of two one-dimensional
RD processes, (a) without additional filter processing and (b) with additional filter processing

FIGURE 8
Snapshots in the case of a uniform background taken at frames no. 10, 20, and 30; the textureless
object slowly moves into the bottom-right direction

MOTION VECTOR ESTIMATION OF TEXTURELESS OBJECTS 183

FIGURE 9
Snapshots in the case of an ideal stable background

However, the texture not only expands inside the object, but also outside the
boundaries. This result appears trivial keeping in mind that the definition of
the moving object, or similarly the interpretation of the inside and outside
of an object are only possible with prior knowledge, under the conditions
of uniform object over a uniform background. The generation of patterns
outside the object leads to errors in motion detection.

3.2 Ideal background
Simulations conducted under the condition of a uniform object moving over
a patterned background are considered. Simulation results are shown in Fig-
ure 9. An ideal background is defined from its capacity to block the genera-
tion of patterns, thereby enabling an algorithm to differentiate an object, or a
moving object from its background. Consequently, an ideal background can
be obtained from a any pattern that has developed into a stable state using the
RD algorithm. As an example of an ideal background, a cross-stripe image is
generated using the proposed algorithm until the generated texture is stable.
Clearly, the expansion of texture outside the moving object is observed to be
inhibited. Thus, under this type of ideal conditions, the proposed algorithm
is expected to provide excellent inputs to the block-matching unit.

3.3 Real background
Texture generation simulations considering a real background are conducted
to confirm the practicality of the proposed algorithm. Simulation results using
a bookshelf as the real background over which a synthetic uniform, i.e., tex-
tureless, black square is moving are shown in Figure 10. In this case, the

184 MIHO USHIDA et al.

FIGURE 10
Snapshots in the case of a real background

outside expansion of texture is inhibited. Stable texture is generated inside
the object boundaries, which is shown in the next Subsection.

3.4 Motion estimation
The optical flow function available from the OpenCV library is used as a
motion estimation processing [17]. The results of motion estimation with a
real background image are shown in Figure 11. The images located on the

FIGURE 11
Snapshots of motion estimation considering a real background, at two frames. The upper images
and edge inlet result from a classical motion vector estimation and yield in a sparse motion vector
field located at the edges of the moving object. The lower images result from RD preprocessing
prior to carry out motion vector extraction, and yield a dense motion vector field

MOTION VECTOR ESTIMATION OF TEXTURELESS OBJECTS 185

upper position that are labeled edge and in which the bookshelf is easily dis-
tinguished present results obtained without RD preprocessing. Motion vec-
tors are only detected on the boundary of the square. The images located on
the lower position that are labeled inside and in which the bookshelf can not
be distinguished present results obtained using the proposed RD preprocess-
ing.

The motion vector field is detected on the boundary and extends inside the
textureless moving object. Furthermore, the direction of the motion vectors
is almost correct is all cases.

The proposed algorithm thus presents a significant improvement in the
quality of the generated motion vector field, specifically also in the case of
real world sequences that have a sufficient texturing level, and over which the
textureless object may move.

From a theoretical point of view, the proposed RD-based texture genera-
tion inside moving objects is only suitable to objects translating in front of
the camera, which may be a severe limitation of the method. Nevertheless, in
practical terms, respecting the condition of high-speed image acquisition, or
equivalently the condition of a low-speed moving object has been observed
to yield very small differences in consecutive images. As a benefit, (mov-
ing) approaching objects as well as (moving) tilting objects have also been
observed to be supported by the proposed method. The strict conditions of
success can be expressed in terms of speed of approach or rotation over one-
self, with respect to the camera acquisition rate and have not yet been studied.

The proposed one-dimensional algorithm applied to two-dimensional
video sequences is suitable to an efficient hardware implementation. In prior
research, the two-dimensional RD algorithm [15] has been implemented on
digital hardware [16]. Based on this prior art, an efficient hardware imple-
mentation of the one-dimensional RD model can be considered.

4 SUMMARY AND DISCUSSION

In this study, a texture generation algorithm that uses RD processing is pre-
sented to enable motion estimation on the inside of the boundary of texture-
less objects by detecting the motion of the generated texture. The nature of
the RD process that is applied to natural images and images acquired from
imperfect cameras dictates the usage of a one-dimensional RD process, that
is applied in two perpendicular directions in independent steps. The results
obtained are finally combined and the textured images delivered to a motion
vector estimation algorithm based on the optic flow detection. Simulation
results emphasize the necessity of a suitable, i.e., textured background to
avoid the expansion of generated texture outside the moving object. Motion

186 MIHO USHIDA et al.

vectors could be reliably determined from texture generated inside moving
objects under the condition of an appropriate background.

The reliable and correct determination of motion vector fields has not
been considered in video processing prepared for human auditors, but it is
expected to become a necessity in future machine vision based automated
decision systems. The classification of patterns consisting of motion vectors
has been carried out in simulation confirming the possibility of using the
vector fields generated using the proposed method. In this case, cognitive
classification has been achieved using a machine learning algorithm, [18]. A
perceptron-based classifier has been used to assess whether an object moves
to the right. Preliminary results using the real image situation confirm signif-
icant improvement of the time of convergence of the neural network using
the RD texture generation, as a benefit of the increased number of motion
vectors. Hence, the performance of machine learning decision-based vision
systems appears increased by extending its input information content, in this
case consisting of a dense motion vector field.

Finally, the proposed method has low memory requirements, and is thus
suitable for a future integration into a hardware platform.

ACKNOWLEDGMENTS

This study was supported by a Grant-in-Aid for Scientific Research on Inno-
vative Areas [2511001503] from the Ministry of Education, Culture, Sports,
Science and Technology (MEXT) of Japan.

REFERENCES

[1] A. j. Tabatabai and Radu S. Jasinschi and T. Na Veen, Motion Estimation Methods for
Video Compression A Review, Journal of the Franklin Institute, Vol. 335, No. 8, pp. 1411–
144, 1998.

[2] M. Tanaka, Japan patent Kokai JP2014-52934A, 2014.

[3] Y. Takagi, Japan patent Kokai JP2012-15959A, 2012.

[4] X. Liyin, S. Xiuqin, Z. Shun, A review of motion estimation algorithms for video com-
pression, 2010 International Conference on Computer Application and System Modeling
(ICCASM), pp. V2-446-V2-450, 2010.

[5] M. Jakubowski, G. Pastuszak, Block–Based Motion Estimation Algorithms – A Survey,
Springer Opto–Electronics Review, Vol. 21, No. 1, pp. 86–102, 2013.

[6] N. K. Parmar, M. H. Sunwoo, Recent Progress on Block-Based Motion Estimation Tech-
niques, IETE Technical Review, Vol. 32, No. 5, pp. 356–363, 2015.

[7] L.-M. Po, W.-C. Ma, A novel four-step search algorithm for fast block motion estimation,
IEEE Transactions on Circuits and Systems for Video Technology, Vol. 6, No. 3, pp. 313–
317, 1996.

MOTION VECTOR ESTIMATION OF TEXTURELESS OBJECTS 187

[8] R. Fontaine, The State-of-the-Art of Mainstream CMOS Image Sensors, 2015 International
Image Sensor Workshop (IISW), Introductory Paper, Vaals, The Netherlands, 2015.

[9] M. Mori, T. Itou, M. Ikebe, T. Asai, T. Kuroda, M. Motomura, FPGA-Based Design for
Motion Vector Estimation Exploiting High-Speed Imaging and Its Application to Motion
Classification with Neural Networks, Journal of Signal Processing, Vol. 18, No. 4, pp. 165–
168, 2014.

[10] M. P. Vijaykumar, A. Kumar, S. Bhatia, Latest Trends, Applications and Innovations in
Motion Estimation Research, International Journal of Scientific & Engineering Research,
Vol. 2, No. 7, pp. 1–6, 2011.

[11] J. D. Murray, Mathematical Biology I: An Introduction (3rd Ed.), Chap. 7, p. 239, Springer,
New York, 2002.

[12] M. Gerhardt, H. Schuster, A cellular automaton describing the formation of spatially
ordered structures in chemical systems, Physica D, Vol. 36, pp. 209–221, 1989.

[13] Y. Suzuki, T. Takayama, I. Motoike, and T. Asai, Striped and spotted pattern generation
on reaction diffusion cellular automata: Theory and LSI implementation, Int. J. Unconv.
Comput., vol. 3, pp. 1–13, 2007.

[14] M. Ushida, K. Ishimura, T. Asai, and M. Motomura, A reaction-diffusion algorithm for
texture generation towards motion-vector estimation of textureless objects, 2015 RISP
International Workshop on Nonlinear Circuits, Communications and Signal Processing,
Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia, pp. 361–364, 2015.

[15] K. Ishimura, K. Komuro, A. Schmid, T. Asai, and M. Motomura, Image steganography
based on reaction diffusion models toward hardware implementation, Nonlinear Theory
and Its Applications, vol. 5, no. 4, pp. 456–465, 2014.

[16] K. Ishimura, K. Komuro, A. Schmid, T. Asai, and M. Motomura, FPGA implementation
of hardware-oriented reaction-diffusion cellular automata models, Nonlinear Theory and
Its Applications, vol. 6, no. 2, pp. 252–262, 2015.

[17] G. Bradski, A. Kaehler, Learning OpenCV: Computer vision with the OpenCV library,
O’Reilly Media, Inc., 2008.

[18] T. Itou, M. Mori, M. Ikebe, T. Asai, T. Kuroda, M. Motomura, A new architecture for
feature extraction to perform machine learning by using motion vectors and its implemen-
tation in an FPGA, Proceedings of the 2015 RISP International Workshop on Nonlinear
Circuits, Communications and Signal Processing, Kuala Lumpur, Malaysia, pp. 294–297,
2015.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile ()
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Aharoni-Bold
 /Aldhabi
 /Andalus
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Aparajita
 /Aparajita-Bold
 /Aparajita-BoldItalic
 /Aparajita-Italic
 /ArabicTypesetting
 /ARBERKLEY
 /ARBLANCA
 /ARBONNIE
 /ARCARTER
 /ARCENA
 /ARCHRISTY
 /ARDARLING
 /ARDECODE
 /ARDELANEY
 /ARDESTINE
 /ARESSENCE
 /ARHERMANN
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ARJULIAN
 /Batang
 /BatangChe
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /Calibri-Light
 /Calibri-LightItalic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /ComicSansMS-BoldItalic
 /ComicSansMS-Italic
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /DaunPenh
 /David
 /David-Bold
 /DFKaiShu-SB-Estd-BF
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /DokChampa
 /Dotum
 /DotumChe
 /Ebrima
 /Ebrima-Bold
 /EstrangeloEdessa
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EuphemiaCAS
 /FangSong
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /Gabriola
 /Gadugi
 /Gadugi-Bold
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Gautami-Bold
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gisha
 /Gisha-Bold
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Impact
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /IskoolaPota
 /IskoolaPota-Bold
 /JasmineUPC
 /JasmineUPCBold
 /JasmineUPCBoldItalic
 /JasmineUPCItalic
 /KaiTi
 /Kalinga
 /Kalinga-Bold
 /Kartika
 /Kartika-Bold
 /KhmerUI
 /KhmerUI-Bold
 /KodchiangUPC
 /KodchiangUPCBold
 /KodchiangUPCBoldItalic
 /KodchiangUPCItalic
 /Kokila
 /Kokila-Bold
 /Kokila-BoldItalic
 /Kokila-Italic
 /LaoUI
 /LaoUI-Bold
 /Latha
 /Latha-Bold
 /Leelawadee
 /LeelawadeeBold
 /Leelawadee-Bold
 /LevenimMT
 /LevenimMT-Bold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /LucidaConsole
 /LucidaSansUnicode
 /MalgunGothic
 /MalgunGothicBold
 /MalgunGothicRegular
 /Mangal
 /Mangal-Bold
 /Marlett
 /Meiryo
 /Meiryo-Bold
 /Meiryo-BoldItalic
 /Meiryo-Italic
 /MeiryoUI
 /MeiryoUI-Bold
 /MeiryoUI-BoldItalic
 /MeiryoUI-Italic
 /MicrosoftHimalaya
 /MicrosoftJhengHeiBold
 /MicrosoftJhengHeiRegular
 /MicrosoftJhengHeiUIBold
 /MicrosoftJhengHeiUIRegular
 /MicrosoftNewTaiLue
 /MicrosoftNewTaiLue-Bold
 /MicrosoftPhagsPa
 /MicrosoftPhagsPa-Bold
 /MicrosoftSansSerif
 /MicrosoftTaiLe
 /MicrosoftTaiLe-Bold
 /MicrosoftUighur
 /MicrosoftUighur-Bold
 /MicrosoftYaHei
 /MicrosoftYaHei-Bold
 /MicrosoftYaHeiUI
 /MicrosoftYaHeiUI-Bold
 /Microsoft-Yi-Baiti
 /MingLiU
 /MingLiU-ExtB
 /Ming-Lt-HKSCS-ExtB
 /Ming-Lt-HKSCS-UNI-H
 /Miriam
 /MiriamFixed
 /MongolianBaiti
 /MonotypeCorsiva
 /MoolBoran
 /MS-Gothic
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MS-UIGothic
 /MVBoli
 /MyanmarText
 /Narkisim
 /NirmalaUI
 /NirmalaUI-Bold
 /NSimSun
 /Nyala-Regular
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /PlantagenetCherokee
 /PMingLiU
 /PMingLiU-ExtB
 /Raavi
 /Raavi-Bold
 /Rod
 /SakkalMajalla
 /SakkalMajallaBold
 /SegoePrint
 /SegoePrint-Bold
 /SegoeScript
 /SegoeScript-Bold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /SegoeUI-Light
 /SegoeUI-LightItalic
 /SegoeUI-Semibold
 /SegoeUI-SemiboldItalic
 /SegoeUI-Semilight
 /SegoeUI-SemilightItalic
 /SegoeUISymbol
 /ShonarBangla
 /ShonarBangla-Bold
 /Shruti
 /Shruti-Bold
 /SimHei
 /SimplifiedArabic
 /SimplifiedArabic-Bold
 /SimplifiedArabicFixed
 /SimSun
 /SimSun-ExtB
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Time-Roman
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /TraditionalArabic
 /TraditionalArabic-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga
 /Tunga-Bold
 /UrduTypesetting
 /Utsaah
 /Utsaah-Bold
 /Utsaah-BoldItalic
 /Utsaah-Italic
 /Vani
 /Vani-Bold
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vijaya
 /Vijaya-Bold
 /Vrinda
 /Vrinda-Bold
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [4000 4000]
 /PageSize [504.000 720.000]
>> setpagedevice

