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ABSTRACT: One of the goals in the intelligent materials area is to develop material systems that
¢an process information by using the material's own properties. To develop such systemns, we must
first find an information-processing method that is achievable using the materia! jtself. Several
potential distributed information-processing architectures are described.

INTRODUCTION

NTELLIGENT materials are a new and exciting field of re-

search. One of the goals in this area is to develop materia}
systems that can process information by using the material’s
own properties, what I call “material processors” To de-
velop such systems, we must first find an information-
processing method that is achievable within the material
itself. Neural networks and other non-Neumann archi-
tectures will be necessary for developing these material
processors. The purpose of this paper is to introduce some
nen-Neumann architectures that might be used as material
processors. I hope that it will stimulate the reader’s thinking
in this area.

DISTRIBUTED INFORMATION-
PROCESSING ARCHITECTURES

There are two basic ways that we can use new materials
for information processing. One is to construct conventional
electronic devices, such as transistors, functional devices,
and logic units from the new material, and then interconnect
them to construct electrical circuits that perform the infor-
mation processing. This approach is illustrated in Figure
1(a). The problem is that integrated circuits made of new
materials would have a hard time competing with silicon
LSI, which is a weli-established, mature technology.

The more promising approach is to directly use the
material’s physical properties to perform the information
processing, as shown in Figure 1(b). This means using the
material’s atoms or molecules as the processing elements.
From this we can develop material processors that provide
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new functions. With these new material processors, how-
ever, we can no longer use conventional Neumann-type
computing architectures. We need a new “distributed”
information-processing architecture.

Unlike LSI devices, we cannot interconnect atoms or
molecules it the material; they only interact with close
neighbors [Figure 2(a)]. In order to achieve useful informa-
tion processing under these restrictions, we must use a “dis-
tributed” information-processing architecture [Figure 2(b)].
This is a special information-processing method that uses
many identical processing elements, each of which operates
only with its neighboring elements.

In the following, I will present for future discussion a few
candidates for this special type of information-processing
architecture. They are: holonic systems, neural networks,
cellular automata, and analog devices. They all use a
distributed-paralie] information-processing method and are
different from conventional programmed computing.

HOLONIC SYSTEMS

A holonic system is a distributed information-processing
systern that uses a synthesizer and 2 memory composed of
many unit oscillators (called holons}, each of which has ex-
citatery/inhibitory interactions with its neighbors. It can
perform pattern recognition by using entrainment among
the holons in the synthesizer and the memory.

Figure 3 shows the basic structure of this system. An
input plane senses the input pattern and excites the syn-
thesizer. The synthesizer extracts the information from the
input pattern and compares the data with sample patterns
stored in its memory. When the data matches one of the
sample patterns, entrainment occurs between the synthe-
sizer holons and the corresponding memory holons, and the
input pattern is classified.
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Figure 1. Two ways to process information: (a} use an slectrical cir-
cult constructed with electronic devicas (integrated circuit) or (b) use
the material’s own properties (materiel processor).
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Figure 2. Distributed information-processing architecturs, A special
information-processing method that uses many identicel processing
elements, sach of which operates only with its neighboring sfe-
ments.
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Figure 3. Basic structure of holonic system. It is & paftemn-
recognition system that utiizes entrainment among the holons in the
synthesizer and the memory.
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Filgure 4. Synthesizer structure, It consists of many holons, each of
which has excitatoryfinhibitory interactions with its neighbors.

There are various types of synthesizers. Figure 4 shows a
simple-version model. It consists of four sensing layers that
extract four directional lines of information (vertical, hori-
zontal, and two oblique directions). Each sensing layer con-
sists of regularly arrayed holons, each of which is excited by
a pixel signal from the input plane. Nonlinear osciliators,
e.g., van del Pol oscillators with dumping and interaction
terms, are used as holons. The holons on each sensing layer
interact only with their neighbors. Holon interactions are
excitatory in a specific direction and inhibitory in the other
directions. Moreover, the four holons corresponding to a
pixel inhibit each other. See Shimizu and Yamaguchi (1987,
199]) for a complete description of system operation. Im-
proved holonic systems have been investigated. More recent
versions can perceive the topographical relationships of the
input-pattern lines, sides, and vertexes. They can also
recognize rotated patterns.

Holonic systems have only been theoretically discussed,
not implemented. It is difficult to construct a holonic system
with existing electronic devices because it requires an enor-
mous number of such devices, even for a simple model. We
should therefore investigate constructing holonic systemns
using the material’s structure and properties. It may be that
large holonic systems can be achieved by using electron
dynamics in three-dimensional semiconductor superlattices,
or molecular dynamics in liquid crystals (Figure 5}.

NEURAL NETWORKS

A neural network is a distributed information-processing
system characterized by self-organization. The network is
composed of many identical inter-connected processing ele-
ments (neurons), and automatically modifies the internal
connections (signal channels) by learning to produce re-
quired information-processing capabilities. There are sev-
eral neural-network architectures, as listed in Table L.

"Neural networks can carry out various information-
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Figure 5. Material holonic system. Large holonic systems may be
achiaved by using three-dimensional semiconductor superlattices or
liquid crystals.

processing tasks such as mapping, combinatorial optimiza-
tion, and associative operation,

Figure 6 shows the basic concept of neural networks. An
example of the backpropagation neural network (one of the
most useful neuro-architectures) is given. The network has
a hierarchical structure consisting of fully interconnected
layers of neurons. Each neuron is comprised of several
processing elements with local memory, as will be ex-
plained below. The information processing that the back-
propagation neural network carries out is the approximation
of a mapping from a subset of m-dimensional input space to
a subset of n-dimensional output space, by means of training
on example data of the mapping. For example, in an applica-
tion to character recognition, the input to the network is a
set of picture array signals from an image sensor, and the
output is a code that indicates which of the characters the in-
put represents.” At first the network gives no correct output
because stored values in the local memory are not op-
timized, so it is trained with example data. On each individ-
ual training trial, the network is supplied with an example
input and an error data that indicates the difference between
the actual output and the desired output. In the training pro-
cess, the network modifies values stored in the local
memeory to produce the correct output,

Each of the backpropagation neurons has a number of in-
coming and outgoing connections [Figure 7(a)]. The incom-
ing connections receive input signals from the preceding
neurons and at the same time send error signals back to the
preceding neurons. The outgoing connections send an out-

Table 1. Neural network architectures.
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inpwt

x1
x2
X3

LY ]

Km

Figure 6. Basic structure of neural network. Backpropagation
neural network is shown here.

- put signal to the following neurons, and in turn receive error

signals. Each neuron has local memory to store weight
values, which determine the coupling constants of the con-

nections. The operation of each neuron is completely local.

Each one produces an output signal which depends only on

the current input signals and the weight values in memory.
At the same time, each neuron avtomatically modifies its

weight values in accordance with a learning law to produce

the correct output. The computing/learning algorithm is

shown in Figure 7(b). See Rumelhart and McClelland

(1986) and Hect-Nielsen (1990) for a more detailed dis-

cussion.

In order to achieve material neuron operation, we first
need to find an effective computing/learning architecture
that is achievable with material properties. Among various
neuro-architectures, the deterministic Boltzmann machine
(a variant of the Boltzmann machine) seems to be achievable
because of its simplicity in learning operations (Morie and
Amemiya, 1990), but I have not been able to confirm this in
actual materials. Further investigation of new architectures
is needed.

There has been some success in implementing neural net-
works using LSIs. It is difficult, however, to prepare a suffi-
cient number of neurons for practical use because each
neuron requires a great many devices. We should therefore
attempt to construct large-scale material neural networks.
For example, we might attempt to use conductive long-chain
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Figure 7. Backpropagation neuron and its operation: (a) connec-
tions and signal flow and (b) computing/learning algorithm of the
backpropagation model.
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polymers or solid electrolytes. We can achieve large-scale
neurocomputing by using these materials, provided that we
can find an effective method for electrically rearranging
their network structures (Figure 8).

CELLULAR AUTOMATA

A cellular automaton is a distributed information-
processing system consisting of a large number of simple
identical processing elements with local interactions. Figure
9 shows the basic concept of a cellular automaton. It con-
sists of many processing elements (cells) regularly arrayed
on a plane. Each cell has two or more states, and the cells
change their states synchronously in discrete time steps ac-
cording to local interaction rules. Each cell determines its
state based only on the values of neighboring celis. It con-
tains no control center, but is capable of complex behavior.

A cellular automaton has several possible applications.
One is transducers, which produce an output information
pattern in response to an input information pattern. As an
example [Figure 10(a)], we assume that each cell has two
states, 0 or 1. Consider the eight neighbors in setting each
cell state and follow the local interaction rule shown in
Figure 10(b)(called the Game of Life rule). We start with the
initial cell-state pattern shown in Figure 11(a)(step 0). With

processing element
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R
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Figura 9. Cellular automaton. An information-processing system
consisting of a large number of simple identical cells with focal in-
teractions.
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Figure 10. Example of celluler automaton oparation. The Game of
Life rule operation Is shown here.

time steps, we can observe the pattern transition as shown in
the figure (step l-step 7). As another example, we input the
simple pattern (A) in Figure 1i(b). A number of steps later,
we obtain the complex output pattern (B); they may have a
topological relationship with each other. There are many
other interaction rules and therefore various behaviors. A
three-dimensional structure has also been studied. See
Preston and Duff (1984) and Toffoli and Margolus (1987) for
detaiis.

With proper rules and structures, we could obtain some
useful pattern transformations. As an example, I give an ap-
plication to noise removal in picture processing (Figure 12).
If a given picture is binary valued (black and white), noise
that is smaller than the picture detail can be removed by a
processing of contraction and expansion. The contraction
step changes all black pixels to white if they have any white
neighbors, and the expansion step changes all white pixels
to black if they have any black neighbors. The contraction
deletes black noise points, and the expansion deletes white
noise points. By combining both steps, we can obtain fine
pictures from noisy ones.

In order to implement cellular automata in materials, we
should search for interaction rules that satisfy the dual re-
quirements for producting useful information processing
and for being achievable with the material properties. We
should investigate materials such as semiconductor-
quantum boxes, liquid-crystal molecules, and superconduc-
tive electron pairs. In this microscopic world, we can no
longer use electricity for interaction signals; instead we
must use other media, like lattice elasticity, Coulomb force,
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Flgure '1 1. Paitern transformation. Two examples following the
Game of Life rule are shown.
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charge transfer, and wavefunction. One report has already
discussed the possibility of using semiconductor-quantum

"boxes for the cells (Obermayer, Teich, and Mahler, 1988). If

we can find the molecules or crystal units that provide useful
functions for the cefls, we can then construct large-scale
cellular automata by using these materials (Figure 13).

ANALOG DEVICES

An “analog device” is a mechanical-material system that
solves a specific problem by applying an analogy of its
structure or behavior to the elements of the problem. It is a
simulation machine rather than an information-processing
system.

As an example, consider the following problem (Figure
14). Connect n points on a plane with a graph of minimum
overail length, allowing the use of additional points. This is
an example of an NP-complete problem, and is called the
minimum Steiner-tree problem. It requires enormous com-
puting time to solve because presently known algorithms
need 2" computational steps. Nevertheless, there is an in-
genious mechanical-material system that can quickly solve
this problem (Figure 15). Prepare two parallel glass plates
and insert n pins between the plates to represent the points;
then dip the structure into a soap solution and withdraw it.
The soap film connects the n pins in an approximate Steiner-
tree network. The equilibrium of the scap film tension is
well utilized in this analog device.

Similar devices have been devised for other problems (the
least squares problem, the longest path problem, and so
forth). See Isenberg (1978) and Dewdny (1984, 1985) for
details. At present, all of these analog devices are merely
for fun. They may, however, provide some guidance for our
intelligent material study.

SUMMARY

One of our goals is to develop material processors that
can perform information processing by directly using the
structure and properties of the material itseif. To do this, we
must first find an information-processing method that is
achievable with the material. Several candidates for this
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kind of information-processing architecture were presented.
Their development requires further study.
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