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The trends in AI chip development since 2013 can be divided into two categories of applications: server and edge. As for the server, recently, ASIC
chips designed for learning functionalities have become mainstream, with competitively computational performance. However, the limitations of
Moore’s Law have started to impose themselves on this emerging type of AI chips, creating the need for new technological innovation. Meanwhile,
regarding edge AI chips, research on data compression technology is advancing to lower power consumption while maintaining high performance.
Further improvements have been made since 2017 in recognition accuracy in binary/ternary; moreover, there has been research on in-memory
processing to configure 1 bit by combining memory and arithmetic element, where non-volatile memory can achieve higher performance and lower
power consumption. With these backdrops, this paper summarizes the progress made to date in the field of AI chip technology while also
identifying the future direction of next-generation technologies. © 2020 The Japan Society of Applied Physics

1. Introduction

Because of the numerous advancements made in the field of
deep learning technology in 2010, various novel artificial
intelligence (AI) chips have been developed and various
products based on these chips have been released since 2013.
In this study, we explain the technical content through several
trends. We define an AI chip as a “chip specializing in
realizing the operations of the brain” and targets deep
learning chips with advanced abstraction as well as some
neuromorphic chips.1)

As shown in Fig. 1, the evolution and emergence of AI
chips can be broadly divided into two periods: one from 2013
to 2015, and the second from 2015 onward. The first period is
the basic research (Basic) phase, which can be seen as the
period during which the implementation method of the basic
net models was explored, and the second period can be
considered as the practical application research phase. This
can be further divided into two phases, one in which high
efficiency was pursued, and the other phase that is more
diversified (Versatile) than the second phase.2) This phase is
the period in which products with low power consumption
and high performance were developed, particularly targeting
edge applications such as mobile/IoT applications. This paper
will discuss various specific chip types.
The Basic Phase has four activity flows. The first is the

pursuit of the circuit configuration of the convolutional neural
network (CNN). This is from the LeCun-led New York
University and Purdue University, as well as from the
TeraDeep group, which took over from Neuflow3) in 2011 to
nn-X4) and later extended to ShiDianNao5) and Eyeriss.6) The
second activity flow constitutes a wide range of activities
related to the Chinese Academy of Science’s (CAS) DianNao
series, which took place over a relatively brief period of 18
months starting 2014. Extensive studies were conducted on
four different chips: basic configuration (DianNao),7)

learning (DaDianNao),8) vision (ShiDianNao),5) and multi-
purpose (PuDianNao).9) The third activity flow is Google’s
Tensor Processing Unit (TPU),10) whose basic configuration
and basic design were considered to have been realized
between 2013 and 2014. This basic chip design is dedicated
to server inferences. The three activity flows mentioned
above are explained further in Chapter 2 (AI chip for servers)

and Chapter 3 (edge AI chips). The fourth activity flow is
IBM’s TrueNorth,1) which gained attention in 2014. This is
described in Chapter 4 as a type of neuromorphic chip that
aims to acquire intelligence by imitating human brain cells.
During the second half of the 2nd phase (high efficiency),

research on quantization and compression technology aiming at
achieving smaller size and lower power consumption, with a
focus on application to edge-type mobile devices worldwide,
was actively pursued from mid-2015. Table I shows the
specifications of each chip. As shown in Table I, many studies
have been published, for examples, Eyeriss6) of the
Massachusetts Institute of Technology (MIT), Energy Efficient
Engine (EIE)11) of Stanford University, ENVISION 11 of KU
Leuven University in 2017, and the deep neural processing unit
(DNPU) of KAIST.12) The circuit technology for quantization
and compression of these chips is discussed in Chapter 3 (edge
AI chips), and chip characteristics are discussed in Chapter 5.
Furthermore, AI chips have diversified since the latter half

of 2017. The authors classified this stage of technological
development as Phase 3 (Versatile). For server applications,
ASIC chips (for learning) include Google’s TPU-v2/v313)

and preferred network’s (PFN) MN-Core. Regarding edge
chips, several IPs for incorporation into smartphones have
now debuted, such as Kirin970 by Huawei and Apple’s A12
chip. The pursuit for high efficiency continues, and KAIST’s
UNPU14) and the QUEST,15) developed at Hokkaido
University, which adopted a circuit architecture optimized
for lower bits (4 bits or fewer), were announced at academic
conferences. Many other presentations from around 2016
have also focused on a form of in-memory processing as a
lower-bit technology that is closer to the mechanisms of the
synapses and neurons of brain cells, such as 6T-SRAM16)

developed at Princeton University, 8T1C- SRAM,17) and
BRein18) developed at Hokkaido University (BRein is a near-
memory configuration). Although bits are reduced to binary
(1 bit)/ternary (2 bit), deep learning algorithms to increase
recognition accuracy have also been actively proposed (e.g.
IBM’s PACT-SAWB-fpsc technology19)). Similar to brain
cells, these chips require analog sensing (readout) tech-
nology. Ultimately, it is more efficient and desirable to
replace SRAM with NMV. Since 2018, non-volatile memory
(NVM) technologies have been adopted on AI chips. Many
announcements that incorporate NVM, such as Panasonic’s
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ReRAM’s resistive analog neuro device (RAND) chip20) and
IBM’s Projection PCM21) technology, have received much
attention. Moreover, Intel’s Loihi22) project, which aims to
explore the practical application of spike-timing-dependent
plasticity, a learning principle specific to spiking neural

networks (SNNs) is gaining research attention for its ability
to create a new trend in the future.
Chapter 2 describes AI chips for servers, Chapter 3

describes edge AI chips, and Chapter 4 describes neuro-
morphic chips. Chapter 4 discusses the recent configurations

Fig. 1. (Color online) AI chip trend.

Table I. (Color online) Typical AI chip specifications.
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made with respect to in-memory processing as a function
designed to mimic brain operations.

2. Trends in AI chips for servers

In this chapter, we will first discuss the typical chip
throughput [tera flops per second (TFLOPS) or tera operation
per second (TOPS)] for each generation of AI chips used for
full-scale inference and learning in servers. Next, the basic
circuit system configuration of the AI chip will be described
using Google’s TPU10) as a motif. An overview of the two
major factors used to determine performance, computation,
and the data transfer memory bandwidth will be outlined.
After describing the DaDianNao DRAM-embedded chip,8)

announced in 2014, the current state of typical GPUs and
ASICs will be explained.
2.1. AI computing
Before embarking on the main discussion, a list and
specifications summarization of different AI chip technolo-
gies are provided in Table I. The different chips are arranged
from left to right in the chronological order of their
development year. However, for TPU, we defined the
development year as 2015, as this was the year in which
the technology was first used in data centers. Chip with an
asterisk (#) in the chip name in Table I are evaluated by only
CAD simulations, and no actual chips of this type have been
manufactured. Only characteristic circuits are described in the
circuit column. Next, the table describes the compression
technology, numerical values of the LSI configuration, and
performance specifications.
Figure 2 describes server chip throughput since 2014. The

subscript is the code name or chip name. ■ indicates chips
for inference-making, and • indicates chips for learning.
Although learning and inference-making cannot be easily
diverted to each other, large differences are usually indis-
tinguishable in the basic configuration. The suffix number is
the chip size and the unit used is mm2. All chips are ASICs
except for the NVIDIA GPUs. Typical examples include
DRAM-embedded DaDianNao by CAS, TPU for inference
by Google, and also TPU-v2, v312) for learning. The MN-
Core was also recently developed by PFN in Japan.
Furthermore, IPU chip incorporating large SRAM developed

by Graphcore and Prodigy chip by Tachyum can also be
included. Although their performance is improving, the
design rule is already 7 nm in view, and the cutting-edge
design is always used. The biggest task is the placement of a
large amount of AI-processing elements (PEs) into a single
chip; thus, the chip size of approximately 800 mm2 is used,
and competition with respect to performance centers on
capability to achieve the maximum performance near the
exposure area. This is the same for GPUs after V100
(Volta100) in 2017. It is easier to understand that GPUs
after V100 are considered to be composed of AI parts and
traditional GPU parts.
2.2. Basic circuit diagram
Google’s TPU10) is an accelerator that specializes in 8 bit
integer and inference processing for servers. Around 2013–
2014, Google anticipated exponential rise in demand in the
future and accordingly started designing for the early
introduction to data centers in 2015. As such, as the
developers have stated, the mounting technology is currently
orthodox and by-the-book, except the presence of a local
buffer for batches. Using a design rule of 28 nm, the chip size

Fig. 2. (Color online) Throughput Trend for server AI chips.

Fig. 3. (Color online) Block diagram of the TPU circuit.
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is estimated to be 200–300 mm2, with an operating frequency
of 700 MHz and power consumption of 40 W (thermal
design power is 75 W).
2.2.1. Circuit operation. Figure 3 shows a circuit block
diagram of the TPU chip. Data (e.g. image data) is transferred
from the host CPU/main memory from the lower side of the
chip and stored in a local buffer. Meanwhile, the weights are
loaded from the DDR3 DRAM (8 GB) on the upper side and
are transferred into the chip and two-dimensionally deployed
(position fixed: two weights are stored on each element) in a
matrix multiply unit. The data and weight transfer rates are
10 GB s−1 and 30 GB s−1, respectively. In the unit, PEs that
handle 8 bit multiply-accumulate (MAC) operations are
arranged in an array (256× 256= 64k). A total of 256 bits
of data are input from the left side of the unit, and the
multiplications with the weights at the first column of the
array are executed. This is a vector–vector multiplication of
one of the so-called matrix (weight)-vector (input data)
multiplication operations, which is usually suitable to process
a fully connected layer used for multilayer perceptron (MLP).
The data movements in the next step (one clock) are shown in
the unit with two arrows. The data (D) are transferred in the x
direction clock by clock in a horizontally systolic manner,
and the multiplied results (A) are transferred in the −y
direction by one grid and are summed (accumulated) in the
−y direction through 256 clocks. As a result, one summed
value is output from the lower side of the unit after 256
clocks. Similar processing is performed independently for
each column, and 256 summed values are output. It should be
noted that if 256 data bits of the one vector are simulta-
neously input from the left side of the unit, the summation of
256 multiplied results (A) in the one column cannot be easily
performed. Therefore, a slightly complicated control opera-
tion is performed; when entering the unit, each element of the
input vector is input with a one-clock delay each other in the
−y direction by the systolic data setup circuit. Such a data
flow is called systolic data flow in the vertical direction. The
256 outputs of the unit are temporarily stored in an
accumulator. When the number of input data is greater than
256, the results are summed in the accumulator.
Then, after performing activation, normalization, and

pooling, calculations for the layer are completed; the data
are transferred to the local buffer, and they become the input

for the subsequent layer. In other words, the data go through
one round to the next layer. The workload of the activation
function and pooling processing is as small as a few percent
of the total workload.23) The calculation for the convolution
layer can be performed by one-dimensionally arranging
weights of the filters and input feature map pixels in the
−y direction following the above-mentioned procedure.
2.2.2. Roofline model. The performance limits for a
normal processor can be described using a Roofline model,
as depicted in Fig. 4. The applied workload (application:
Alpha-Go, CNN, MLP, LSTM, etc.) is subject to the
following five rate-determining conditions depending on the
situation, and finally, the operation point is determined.
① Computation limitation (Roof): number of

MACs= 65k, frequency= 700 MHz
② Weight transfer rate limitation: memory bandwidth

(line)= 30 GB s−1

③ Input data transfer rate limitation: bandwidth=
10 GB s−1

④ Input data buffer size limitation: 29% of surface area
⑤ Response time limitation: bandwidth, batch size
Note that the typical limiting factors ① and ② are

abbreviated in Fig. 4. The computation rate for ① represents
the peak value of 92 TOPS s−1 (Tera Operations Per Second),
and the measured value is approximately 90%.9) The weight
transfer rate of ② is determined by a bandwidth of 30 GB s−1,
and therefore, only 60 GOPS s−1 (Giga Operations Per
Second) can be performed. This rate is very small; it is one
thousandth of the computation rate. Therefore, the index of
operational intensity on the horizontal axis of the figure is of
significance as it represents the number of batches, or in the
case of a convolutional (CONV) layer, it represents a value
obtained by multiplying the number of batches by the number
of reuses of the weights and its value is usually in several
hundreds, which is equal to the number of nodes of the output
layer (feature maps) in the CONV layer. The weight transfer
rate limit is denoted as diagonal lines, as shown in Fig. 4. The
intersection with the roof is 1350 batches. To increase the
number of batches, a sufficient local buffer must be designed
in advance. For example, when the size of batch is 100, the
weights located in the unit are reused 100 times for 100 kinds
of input data which have to be pre-stored in the local buffer.
Then, the throughput is improved up to around 5 TOPS s−1

from less than 0.1 TOPS s−1 as shown in Fig. 4.
The method of selecting the number of batches is

explained with respect to each application (Fig. 4). First,
regarding the CONV layer (Alpha-Go), when the number of
squares on the Go board is 19× 19, and the zero-padding
state and a number of filter striding are considered, the
number of weight reuses (horizontal axis) is 19× 19= 361
for each layer. In this state, the throughput is limited by ②,
and as such, eight batch processes are performed.
Consequently, operational intensity in Fig. 4 becomes 2888
(361× 8), which is laid on the computation limited roof, ①.
Since CONV+ FC (based on Inception V2) for image
recognition is composed of convolutional layers and with
four fully connected layers, it is presumed that this network is
affected by the combined effects of ②, ③, and ④. Since the
MLP and the LSTM are mainly composed of fully connected
layers, the throughput is limited by memory bandwidth limit,
②, and the number of batches is limited to approximately 100.Fig. 4. (Color online) TPU Roofline model.
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This can be attributed to the buffer size limitation of ④, but as
the buffer is reported to be in the range 20%–40%,10) the
remaining constraint is the response time limitation, ⑤. With
LSTM, the application developer requested 7 ms, and as
such, the number of batches was limited to approximately
100.
As described in the paper,10) while numerous specific

issues (learning, countermeasures to memory bandwidth
limitation during operation of fully connected layers, sparsi-
fication, quantization, and architecture optimized or reconfi-
gured for the convolutional layer, etc.) were left without
implementing on the TPU, the issues were addressed after the
later part of 2014. Subsequent sections of this paper will
outline developments over these issues.
2.3. Memory-embedded AI chips (DaDianNao/IPU)
In particular, DaDianNao,8) which was announced at the end
of 2014 and attracted attention as a machine learning super-
computer, was developed with the aim of eliminating weight
transfer limitations especially in the fully connected layers
and for developing a chip suitable for learning tasks. This is
the second of the four chips of CAS’s DianNao series and is a
DRAM-embedded chip, as shown in Fig. 5. A total of sixteen
tiles are placed, and each tile contains four memory banks, at
the center of which is an arithmetic unit (neural function
unit). The operation unit has a built-in 16× 16 matrix
operation unit. The weight memory capacity is 32 MB for
the entire chip, and the total input/output buffer capacity is
4 MB. A 16 bit fixed-point is used. The chip size is 68 mm2

at 28 nm, which is approximately 1/4th of that of the TPU. In
this configuration, the peak operation performance is 5.6
TOPS s−1 (16 bits), the weight transfer rate (memory
bandwidth) is 5 TB s−1, and the data transfer rate is
25.6 GB s−1. The chip itself consumes 10 W and 6 W for
external data transfer. If the size is approximately the same as
the TPU, the weight transfer is 20 TB s−1, which is
approximately 700 times the TPU 30 GB s−1. However, on

the contrary, the peak throughput is approximately 45
TOPS s−1 (8 bits), which is approximately 1/2 of that for
the TPU. The Roofline is reached in two batches. If the size is
approximately the same as the TPU, 32 MB× 4= 128 MB
of memory can be included on-chip, and therefore, if used in
a Google data center, the maximum weight will be approxi-
mately 100 MB, thereby allowing for on-chip implementa-
tion with a majority of the models.10) If the number of MACs
is further multiplied, LSTM can achieve 100 TOPS s−1, 20–
30 times the performance of the TPU.
Another feature of DaDianNao is that it employs a

reconfigurable circuit architecture and can perform back-
propagation for the learning operation. However, enough
information regarding this backpropagation is not available.
The chip used was designed only using CAD and was not
planned to be manufactured. Thereafter, CAS established a
venture capital firm and was conducting activities based on
the Cambricon24) (ISCA2016), launched in 2016.
Another chip that has recently attracted attention as a

memory embedded AI chip is the IPU chip, which was
launched by Graphcore in 2018. As shown in Fig. 6, 304 MB
SRAMs are distributed on a huge 800 mm2 class chip. The
chip is configured such that the weight memories are
dispersed and closely located with the MAC logics in the
PE array in near-memory fashion (not in-memory fashion
which will be described in Chapter 4). The chip achieves a
throughput of 122 TFLOPS. It should be noted, however, that
the weight memory achieves an effective bandwidth of
45 TB s−1. Consequently, as shown in the upper left portion
of Fig. 4, there is almost no bandwidth limitation, and a
throughput in learning of 100 TFLOPS can be obtained even
with a small number of batches. Graphcore has also verified
that the smaller the number of batches, the higher the
accuracy of learning.
Meanwhile, in Fig. 4, rooflines for two learning chips of

TPU-v2 and v3 by Google are depicted. Although the

Fig. 5. (Color online) Block diagram of the DaDianNao.
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bandwidths of these chips are improved up to 600 GB s−1

and 1.2 TB s−1 using high-bandwidth technologies of DDR5
interface and HBM2, respectively, higher batch sizes of
several tens up to 100 are required and several tens of
percentages of chip area have to be prepared for the buffers
for the batch operation. Overall, Fig. 4 shows the advantage
of the Memory-embedded AI chips on the performance.
2.4. Current status and future trends
In this section, we examine typical server chips for learning,
TPU-v3, V-100 (GPU), MN-Core, and IPU chips, in terms of
the throughput and the circuit configuration. As shown in
Fig. 7, the throughput is distributed at approximately 100–
150 TFLOPS, and there is not a big difference among the
chips. However, the circuit configuration differs greatly;
the memory for batch processing is woven in TPU-v3, and
the block for graphics or HPC is woven in V-100. Regarding
the IPU, the memory for the parameters (Model) takes up a
large area. These chips can be divided into batch-type,
general-purpose-type, and high speed-type.
With this backdrop of the appearance of such a variety of

chip types, there is actually a rate-limiting factor on
throughput that becomes more remarkable due to miniatur-
ization, that is, the capacitance between wires is not scaled.

Consequently, power constraints become even more severe,
and the number of the AI PEs cannot increase as the
miniaturization. This is shown in Fig. 7(b). Dark Si region
highlighted with blue region is generated with proceeding
miniaturization down to 7 nm. To effectively use the Dark Si
area, it is replaced as a batch memory (TPU), general-purpose
or graphic-processing parts (V-100), and model parameter
(weight) SRAM (IPU). Although only two to three years
have passed since its appearance in commercialization, the
learning chips with simple CMOS technology have already
reached its limitations on throughput. In the near future, the
learning chip is expected to exploit quantization25) down to
8 bit and even 4 bit and sparsification technologies, along
with full-scale memory embedded technology.

3. Trends in edge AI chips

This section starts by briefly explaining the range of
applications of edge AI; it then presents an overview of the
first representative edge AI chip type, Eyeriss.6,26) Next, a
specific technology of data compression as the most im-
portant aspect of edge AI chips is explained in terms of its
detailed techniques, implementation methods on the LSIs,
and their trend.

Fig. 6. (Color online) Block diagram of IPU-CORES.

Fig. 7. (Color online) Representative server chips; (a) Architecture comparison, (b) Scaling and constraints.
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3.1. Edge AI chips
As shown in Fig. 8, the field of applications of edge chips is
broad, extending from high performance automotive and
robotic applications to smartphones, IoT, wearables, and
always-on products; thus, required performances of
throughput and power consumption are also widely spread.
In automobiles, the throughput of 10 TOPS and more is
required, and the power consumption is approximately 10 W.
Conversely, for smartphones, it is essential that the power is
1 W or lower. Improving the throughput under this power
restriction is critical. Therefore, implementation of the data
compression technology on the edge AI that can increase the
throughput and reduce the power consumption is the key. It is
noteworthy that with always-on products, the ultimate
compression rate is assumed. The focus of this section is
on the technology, particularly for smartphones and always-
on products.
3.2. Basic circuit diagram (Eyeriss)
Eyeriss chip was announced by MIT/NVIDIA in February
2016 at the International Solid-State Circuits Conference
(ISSCC).6) It targets convolutional layer-oriented models
such as Network in Network/GoogleNet at that time. In this

chip, DRAM is external. As shown in Fig. 9, it incorporates
four circuit technologies.
The first technique is a dataflow control method that

incorporates a proprietary technique while keeping in mind
the reuse of both the data and filter weights in convolutional
computing. In the PE array shown in Fig. 9 above, the
weights (W) are transferred in the x direction, input activa-
tions (I) are transferred diagonally, and the accumulated
outputs (O) is transferred in the y direction. Each PE is
responsible for calculating the one-dimensional convolu-
tional computation (1D Conv) with the weights (one row of
filter) and input activations (one row of input feature map);
the weights, input activations, and intermediate outputs of the
1D Conv are stored in local register files (or SRAM) of
W-LRF, I-LRF, and O-LRF, respectively, and reused with
changing one of the weights or the input activations.
Consequently, repeated data flow to and from the PE array
can be prevented, and thus power wastage due to data transfer
is eliminated. This technique is named the row stationary
dataflow (RS) method. Typical dataflow methods, other than
the RS method, include the weight stationary (WS) method,
which is suitable for batch processing used in TPU,10) and the
output stationary (OS) method, which is relatively suitable
for sparse compression (sparsification) used in ShiDianNao.5)

The second technique is a method of detecting the zero
value of the input activations and skipping the multiplication
operation. In the CONV layer, ReLU is usually used as an
activation function, and thus, more than 50% of the activa-
tions are zero data, and wasteful power consumption is
reduced by 45%. This technology is currently used in most
AI chips.
The third is a network on chip (NoC) function placed in the

SRAM buffer block. Recognition ID numbers are given to
each PE, and using the numbers, the NoC transfer effectively
data and weights to the PEs. For example, data and/or
weights multicasting can be performed efficiently. This
technology controls the RS dataflow as explained above.
Furthermore, the size of the logical two-dimensional PE array
can be efficiently reconfigured with respect to changes in

Fig. 8. (Color online) Application domains for AI chips and their throughputs and power consumptions.

Fig. 9. (Color online) Eyeriss circuit diagram and technologies involved.
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model size (node size, number of channels, number of filters,
etc.).
The fourth point is that lossless compression/decompres-

sion processing (run length compression) shown in Fig. 9 is
performed in the input/output data to the external DRAM,
and the compression efficiency is approximately 1/2.
3.3. Quantization and sparsification
3.3.1. Trends in data compression. The practical appli-
cation research phase began around late 2015, quickly
following the basic research phase. Research on low power
consumption and high performance, especially for mobile
applications, became the most active area of research. The
subject of the study was PE. As shown in Fig. 10,
corresponding dedicated compression circuits are incorpo-
rated to achieve low-bit quantization for data and weights,
and sparsification for data and weights, respectively.
The trend of research activities regarding data compression

can be divided into two areas: one is an algorithm-oriented
movement represented by binary connect/binarized net,27) led

by Professor Bengio of the University of Montreal.
Promising results were obtained with binary (1 bit) and
ternary (2 bit) between 2015 and 2018 as shown in Fig. 11,
and since the ternary-based PACT-SAWB-fpsc net19) was
announced by the IBM in 2019, performance comparable to
32 bit floating point has become available.
Another trend is the circuit architecture-oriented move-

ment creating novel circuit architectures to adapt high-
precision models of Image Net class used for server systems
on the edge AI of mobile or wearable devices, under the
condition that the increase in target error rate is maintained
below 1%.
Regarding the first trend depicted in Fig. 11, the details are

not discussed here, but the favorable results with Ternary/
Binary give a good momentum to the circuit architecture
research. It can be considered as a boost to the recent
progress of In-memory computing architecture especially
suited for low-bit networks. In-memory computing will be
discussed in the Chapter 4.

Fig. 10. (Color online) Trend for data compression.

Fig. 11. (Color online) Reduction of bit precision.
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This paper focuses on the second trend, in which power
consumption is required to be several hundreds of 100 mW
for the mobile or less than 10 mW to achieve always-on
operation. As shown in Fig. 10 (please refer also to the
compression techniques listed in Table I), quantization and
sparsification are further divided into weights and activations,
and they can be roughly categorized into four types.
① Quantization (weights): TWN (Ternary Weight

Network) and BWN (Binary Weight Network), in
which only weights are quantized and whose weights
are 2 bits and 1 bit, are representative examples.
Although there is a feature that the accuracy is less
deteriorated, the calculation cost is not greatly reduced.
One unique technique is weight-clustering (grouping)
during/after learning and weights are referenced in a
look-up table (LUT) during inference.12)

② Quantization (activations/weights): Various techniques
have been published. ENVISION28) performs bit-preci-
sion reductions off-line by alternating activations/
weights layer by layer, from the first layer of the
CONV net. In DNPU,12) only activations are quantized,
but numbers of bits are optimized dynamically and layer
by layer, by increasing or decreasing the decimal digits
of the fixed-point format while detecting the overflow of
the MSB of accumulated results (intermediate values)
on-line. The problem is how to increase speed while
reducing the number of bits. In ENVISION,28) one
multiplier is operated in sub-word units, thus realizing a

2× (4bit)/4× (2bit) speedup compared with that for
8bit.

③ Sparsification (weights: pruning): A well-known tech-
nique is the pruning technique adopted by EIE,11)

shown in Fig. 12. In this technique, connection between
the neuron of the previous layer and the neuron of the
current layer is disconnected (pruned: the weight is set
to zero). It can be done assuming that the weight with
value closed to zero and less than a pre-defined
threshold has a negligible effect on the dot products
between weights and activations, as shown in the top of
Fig. 12. Weight histogram after retraining is shown in
the bottom of Fig. 12. The weight compression effect is
9 times in the FC layer (usually larger than in the
CONV layer). The problem is how to memorize a large
amount of the positions of the pruned connections (zero
weights). The important point is how to compress the
zero positions before inference, and decompress them in
real time during inference. The EIE uses a compressed
sparse column method after learning in the top of
Fig. 13. The top of the figure depicts the flow of the
weight compression. In the inference, a dedicated
decompression circuit (decoder) is installed in the PE,
as shown in the bottom/right diagram of Fig. 13.
Particularly effective applications are speech recogni-
tion and neural machine translation on smartphones that
use MLP and LSTM networks, which are mainly
composed of FC layers.

④ Sparsification (activations: zero skipping): When the
input activations to each PE are zero, the built-in zero
detection circuit issues a flag and stops the operation of
that PE, thereby reducing power consumption by 50%
or more. This technique is used in most chips, but from
a PE array utilization point of view, more than 50% of
PEs are stopped down, so the PE array is not being used
effectively. Thus, a circuit (non-zero detection circuit: at
the bottom side of Fig. 13) was introduced in the EIE
for detecting non-zero activations, leveling the opera-
tion status among PEs, and improving the effective
utilization rate of the PE array.

As described in ①–④ above, a special feature of this field is
the use of specialized circuit design techniques to achieve
goals such as optimal quantization using new algorithms,
solving problems during or after sparsification, or further
improvement.
3.3.2. Implementation status of data compression on
edge AI chips. Significant research and development has
been conducted to resolve the issues of how to incorporate
data compression technology into AI chips since Eyeriss in
2016, as shown in Fig. 14. As indicated in the inset of Fig. 4,
each AI chip is represented by a black or a red colored bar
with the name or code, the height and width of which denote
the bit precision range of the chip and the contribution of the
chip on the sparsification, respectively; the red color indicates
the contribution of the chip on the development of the
dataflow method.
Research activities related to 2 bit (Ternary) and 1 bit

(Binary) technologies have been conducted since 2017. The
goal is to develop a more broadly applicable and more
flexible type of reconfigurable AI chip. KAIST’s UNPU14)

and Hokkaido University’s QUEST,15) both announced in

Fig. 12. (Color online) Pruning in weights.

Fig. 13. (Color online) EIE processing flow for compression and decom-
pression.
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2018, achieved this goal by introducing bit-serial technology
that performs operations on a bit-by-bit scheme. Using this
scheme, a wide range of bit precision can be easily
reconstructed. As for the sparsification, a typical example is
Eyeriss that applies sparse compression for input activity, and
EIE that applies pruning for weights. The red line indicates a
chip for which dataflow has been studied. The OS method
was used for ShiDianNao,5) and the row stationary (RS)
method was considered for application to a part of Eyeriss
and MultiTOPS.29)

As shown in Fig. 14, much research has been conducted on
the implementation of 2 bit (Ternary), 1 bit (Binary), and
XNOR networks on LSIs, i.e. BRein,18) 8T+ C,17)

RAND,20) and T8T,30) to handle the rapid progression in
the algorithms aiming to reduce bit precision as introduced in
Fig. 11. This movement has led to a new trend of in-memory
computing from around 2017, which will be described in
Chapter 4.

4. Neuromorphic chips

This section will describe the trends in AI chip development
related to “Neuromorphic Engineering”, a research and
academic field that aims to faithfully reconstruct neu-
roscience-based models of brain cells on integrated circuits.

This section will focus on AI chips that incorporate in-
memory computing or/and network based on spiking neu-
rons. In this paper, in-memory computing is described as an
imitation of the operation of brain cells.
4.1. In-memory computing using SRAM or NVM
Figure 15 shows the comparison between the ordinal WS-
type PE array (a) and memory array for in-memory com-
puting (b). The memory cells include single MOSFET and
comprise MAC operation with weight W stored in memory.
These two configurations of the PE array and Memory array
will be compared in the following paragraphs.
(1) Array configuration: In the PE array, the output of the

PE is sent vertically to the PE directly below. In
contrast, in the memory array, all the output of the
cells are connected to the one bit-line.31)

(2) Multiplication result: The output of each PE is in digital.
Meanwhile, in memory array, the output is in analog.

(3) Accumulation: In the PE, after sending the output of the
PE into the successive one every cycle in a digital
manner, the final PE outputs the accumulated value. In
the in-memory processing, in contrast, the values of the
products of all cells can be gathered on the bit-line and
are read as the accumulated value with the sense
amplifier simultaneously.

Fig. 14. (Color online) Trend for AI chips and bit precision.

Fig. 15. (Color online) PE array versus memory array (In-memory computing).
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In in-memory computing, power consumption is greatly
reduced and computing speed much improved.
The other advantages in the in-memory computing are

negligible power wastage due to transfer weights to each PE
and extremely high weight memory bandwidth due to
negligible distance between logic and weight memory.
Figure 16 shows the trend in the distance between the logic
(MAC) and weight memory. The distance to the external
memory on the board (external memory) is several centi-
meters. The distance to the internal buffer or internal SRAM
varies from 1 mm to several mm (usually referred to as near-
memory). In in-memory computing, these can be further
reduced down to several nm classes. Both 6T SRAM16,32)

and 8T-1C SRAM17) were announced in 2016 and 2018,
respectively, by Princeton University. The latter evolved into
a 2T (selection transistor) and capacitor C to prevent
erroneous writing during reading, which occurs in the 6T
SRAM case. Because the number of bits per cell is 1, as long
as the SRAM cell is used, to increase bit precision, it
becomes necessary to bundle and process numerous cells
simultaneously.30)

As mentioned above, research, development, and commer-
cialization of in-memory processing by NVM have been
performed in many cases. A typical example is the develop-
ment of ReRAM, which is already mass-produced as a pure
memory chip, for in-memory processing applications, such as
in RAND.20) This is an analog-type NVM AI chip, whose
memory represents several bits per cell. Each column-sensing
circuit on the chip reads a digital result of 1 or 0 by sensing
and comparing the difference in states between pairs of two
complementary bit-lines. It has demonstrated an extremely
low power efficiency of 66 TOPS/W (explained in
Chapter 5). Similarly, the development of phase change
memory (PCM)21) is also advancing. This development can
be characterized by the pursuit of multiple bits per memory,
and to date, highly favorable results have been realized.21) In
addition, the commercialization of products using in-memory
processing is also progressing rapidly. Further, the shipping
of Mythic chips was announced in 2018.
In offering a brief overview of the deployment of NVM

in other types of devices, FeRAM,33) NAND,34) and

SST-MRAM35) have each garnered attention. For NAND, the
ability to read at a high speed is essential. As MRAM can be
four or more times denser than SRAM, expectations for a high-
end inference chip are increasing. Again, it has been shown that
highly accurate inference is possible with 2 bits (Ternary),19) and
this will become an increasingly important aspect in the future.
4.2. Spiking neuron AI chips
The feature of the SNN is that each element (cell) operates
(spike emission) only when a large amount of information
through an axon is input. As such, operations are relatively
rare and low power consumption is achieved. The challenge
is that it is possible to implement the principle of synaptic
plasticity (spike-timing-dependent plasticity), which mimics
the learning mechanism of the human brain relatively easily,
and that new learning task use cases can be realized. The
following paragraphs will illustrate these two well-known
examples by using two AI chips.
4.2.1. Inference AI chips. This section focuses on the
TrueNorth1) technology published in Science in August 2014
as a result of the synapse project funded by the U.S.
Department of Defense’s Defense Advanced Research
Projects Agency (DARPA). This chip is a neuromorphic
chip that mimics the mechanism of brain cells. However, the
following paragraphs will attempt to explain the calculation
method used by TrueNorth and performance with respect to
deep learning rather than to a scientific emulator. This chip is
used only for inferencing.
The configuration of this chip is quite large, at 17× 25

mm2 (28 nm), as shown on the left side of Fig. 17. There are
4096 cores laid out in a 2D array. Communication is
performed by spikes among cores, chips, and boards. This
chip is a crossbar-like virtual synapse incorporated within a
massively parallel real network using packet communications
comprising pulses generated by connected neurons. The
majority of other chips constitute a virtual neural network
adopting a time-share method in which the majority of other
chips use the circuit (PE) at high speed (several hundred
MHz to 1 GHz). In the core depicted on the right side of
Fig. 17, 256-axon inputs are selectively connected at
synapses and transmitted to neurons located at the bottom
of the array.

Fig. 16. (Color online) Distance between logic elements and memory.
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Information (pulses) is transmitted in the 256 independent
neurons according to the neuron model. The architecture can
be configured similar to that of a 256× 256 bit SRAM. The
grid points 0 and 1 of the crossbar serve as synapse
connection information. The crossbar portion performs a
matrix operation (matrix multiplication). However, as the
neuron circuit is large, a virtual neuron method that performs
time-division processing (256 divisions) by using one neuron
circuit repeatedly is adopted.
When calculating the computational performance, the

number of MACs is 256× 256× 64× 64= 268M for the
entire chip, and massive parallel processing of approximately
4,000 times is possible for 65k TPUs. The operating frequency
is 1 kHz to simulate the operation of cranial nerves. Table I
shows the average number of spikes (180 Hz/20 Hz). The
computational performance is 536 GOPS/s, which is consider-
ably lower than that of the TPU (92 TOPS/s); nevertheless, it
is possible to achieve the same performance by increasing the
operating frequency by 1 kHz. However, in practice, there is
thought to be a limitation as a considerably large circuit
utilizes time-division multiplexing. The rate of power con-
sumption is 70 mW, though the actual leakage current is

approximately half of this, resulting in a very high perfor-
mance of 7.7 TOPS/W. At that time, the effective axis input is
1/2 and the pulse-generation probability is usually 20 Hz/1
kHz.1) The probability is controlled by the threshold of the
model.
The key aspects that enable low power consumption are

quantization and sparsification. Considering the similarities
with quantization discussed in the previous section,
TrueNorth uses 1 bit for data, 1 bit for connections, and
2 bits or more clustered weight. In sparsification, the
threshold value of the neuron model is similar to the
pruning threshold value. As the spike output does not
transmit a zero value, this can be interpreted as the function
of zero skip having been performed in the previous layer.
The above 7.7 TOPS/W is only the best reference value; this
is because whether or not the performance is the same
between the dense and sparse operations is not shown.
Using the performance in the sparse state as is and adding
the condition (1 SOPS= 2 OPS) results in a very low value
of 92 GOPS/W as shown in Table I; this is close to that
proposed by IBM. Conversely, the compression ratio can
be considered to be approximately 100-fold. As the

Fig. 17. (Color online) TrueNorth design architecture.

Fig. 18. (Color online) Loihi circuit diagram.
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compression ratio of EIE is 30–50×, it can be regarded as
the same, and the degree of similarity is quite high. Some
TOPS/W can be expected.
To summarize, neuromorphic chips achieve higher perfor-

mance (lower power consumption) by emulating the brain
more faithfully, whereas virtual neural networks with ad-
vanced abstraction initially perform only basic MAC opera-
tions. Nevertheless, in the last 1–2 years, quantization and
sparsification have been introduced to realize higher perfor-
mance.
In addition to the unavoidable time-division multiplexing

of neuron circuits, there is also the second issue of spiking
output when attempting to use deep learning techniques in
mounting a neuromorphic chip. Regarding the first issue, it is
not possible to add more than the size of the core to increase
the scale of the network; therefore, it is necessary to devise a
method that, for example, limits the model itself. Regarding
the second issue, the differential processing utilized by the
backpropagation method is not compatible with spikes;
nevertheless, this can be overcome by approximating the
pulse to a triangular wave.36) In this case, favorable results
were obtained during demonstrations of CNN (MNIST/
CIFAR100) and MLP/BLSTM, which express weights with
ternaries (−1, 0, +1) using axons of adjacent pairs as one
input.
4.2.2. Learning AI chip with spike-timing-dependent
plasticity. This subsection will serve to introduce AI chips
designed for learning tasks. These include Intel’s Loihi22) as
shown in Fig. 18 and CEA-Leti’s DynapSEL chips. These are
equipped with self-learning functions based on synaptic
plasticity. The Loihi was officially released during the first
half of 2018, and Intel has been actively working to
strengthen its collaboration with academia while promoting
challenges to bring out new learning effects. The configura-
tion of this chip utilizes a neuron model and a weight
(synaptic) memory similar to those of TrueNorth, but differs
in that it incorporates a large-scale learning engine shown in
Fig. 18. Although the number of bits per weight is variable, it
typically ranges from 3 to 5 bits. The chip has a Near
Memory configuration with a pseudo-crossbar configuration,
a memory capacity of 128 kB SRAM, and contains 128
cores.

5. Discussion

This section will first discuss throughput and power con-
sumption, which are important performance factors for AI
chips. It will finally characterize the relationship between
applications and weights that represent the scale of the
model, and discuss the importance of memory embedding.
Throughput and chip size: Fig. 19 shows the relationship

between the peak throughput (TOPS or FLOPS/s) and the
chip area. The area size was used by estimating the area of
the circuit related to the operation of the neural network. In
addition, only throughputs were regularized to 28 nm and
700 MHz. Therefore, it is clear that the throughput is
uniquely determined in proportion to the area and is inversely
proportional to the number of bit precision. Most typically, 4
bits constitutes 1 TOPS mm−2 (28 nm, 700 MHz). If the
weight memory is embedded, the calculation portion will
occupy approximately 10% of the whole chip (with
DaDianNao, calculation logic= 6%, buffer= 5%); conse-
quently, if the figure is shifted one digit (10 to 1) to the left,
the result will become almost consistent with the rule. With
EIE11)/DNPU12)/ENVISION,28) the speed can be increased
almost proportionally by selecting a low-bit on the circuit. By
contrast, with the TPU,9) the operation speed does not change
even after changing to 4 bits. EIE can improve the perfor-
mance up to 30-fold by incorporating the functions of
pruning and non-zero detection function.
Power efficiency and throughput: Fig. 20 displays the

relationship between the power efficiency and throughput.
Power efficiency can be improved by reducing the number of
bits, and increases to approximately 10 TOPS/W at 4 bits.
Orland and DNPU use the existing dynamic-voltage-frequency
scaling circuit technology that can change the voltage and
frequency for each circuit, and ENVISION realizes a 40-fold
increase in efficiency while maintaining performance at 76
GOPS/s. This was achieved by introducing the dynamic-
voltage-accuracy-frequency scaling circuit technology, which
is capable of accurate scaling in addition to providing a fully
depleted SOI substrate. As mentioned above, numerous types
of chips can also be mounted on mobile devices, and a 10 mW
class chip (ENVISION: mean 7 mW), capable of always-on
operation, is also possible by dynamic operation of the circuit.
Each chip type represented by a 1 bit Analog in the figure
incorporating the in-memory processing technology described
previously in Sect. 4 has recently realized performances of 100
TOPS/W or more, including the RAND.20)

Estimation of memory embedding: Fig. 21 shows the
relationship between the number of input dimensions and
the number of weights representing the scale of the model.
There is a fixed relationship between the network model and
the number of input dimensions. The size of the model of the
CNN, which comprises primarily the Convolutional Layer
frequently used in image recognition applications, increases
in proportion to the number of input dimensions. Meanwhile,
in MLP or RNN/LSTMs, which are mainly composed of
fully connected layers suitable for simple identification or
recognition of temporal sequences [recurrent neural network
(RNN)], the number increases in proportion to the square of
the number of input dimensions.
Particularly when used for natural language processing or

automatic machine translation (Neural Machine Translation),Fig. 19. (Color online) Relationship between throughput and chip size.
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and as the number of dimensions increases to approximately
105 or higher, because language is used as input, the scale
reaches approximately 1G. At present, IPU Cores, which
have the most memory embedded at the practical level, have
a size of 16 nm, 800 mm2, and an ultimate capacity of
approximately 304 MB (equivalent to a 1G weight when
reduced to 2 bits). However, this type is only used for server
or high-end edge AI chips of approximately 3 cm.
Nevertheless, its power is comparatively high, whereas the
requirement is low power consumption. Various applications
will also become possible with Edge AI, with the develop-
ment of in-memory processing and miniaturization using
NVM with a capacity of several 1 G bits or more.

6. Conclusions

AI chip technology entered a new third developmental phase
in mid-2017, following a basic research phase that

commenced in 2013 and a recent commercialization phase.
Server systems, such as Google’s TPU-v2/v313) for Cloud,
PFN’s MN-Core, and Graphcore’s IPU Cores, are all meant
for practical use or are in a stage just prior to commercializa-
tion, and all are designed for learning tasks. However, the
limitations of Moore’s law, particularly the limitations on
power consumption, are already visible, and these limitations
remain imminent even with further optimization (e.g. low-bit
learning25)). Additional developmental activities are neces-
sary, and NVM is now regarded as a candidate. For example,
multi-bit Projection-PCM21) is one possibility; however, it
appears that many pending issues remain that must be
resolved until practical application will be possible. With
the rapid increase in request on learning, there are high
expectations for the emergence of a savior technology.
Edge AI is believed to be close to practical use with

optimization at the CMOS PE level covered to some extent.

Fig. 20. (Color online) Power efficiency and throughput.

Fig. 21. (Color online) Relationship between numbers of input nodes and weights.

© 2020 The Japan Society of Applied Physics050502-14

Jpn. J. Appl. Phys. 59, 050502 (2020) STAP REVIEW



The development of ASICs that are fairly circuit-oriented is
in progress, and optimization for bit serial processing and
even LUT-based applications is expected to occur in the
future. However, the trend of bit reduction is in the limelight,
and edge products in the 2 bit class will attract more attention
in the future. There has been progress in in-memory proces-
sing configuration and miniaturization of the NVM toward
practical use. Regardless, success will depend on the model
structure and the determination of the optimal number of bits,
and as such, it is necessary to identify future technological
trends and work on solving problems while promoting
collaboration with research and development activities in
the field of AI algorithms. We believe that a new vision for
AI chip technology beyond the current CMOS SRAM base
will be born from ongoing research.
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