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Abstract A neural network exhibiting precisely timed synchronization in a noisy environment with depressing
synapses was proposed by Fukai and Kanemura [1]. Based on this network, we constructed neural network hard-
ware using silicon neurons and depressing synapse circuits and evaluated timing precision among the neurons using
a simulation program with integrated circuit emphasis (SPICE). Consequently, timing jitter among the neurons was
significantly reduced with depressing synapse circuits compared to nondepressing synapses. Moreover, a novel ana-
log circuit mimicking characteristics of spike-timing dependent plasticity (STDP) was proposed to construct a neural
network that exhibits robust synchronization in a noisy environment. We demonstrate the circuit’s basic learning
characteristics using SPICE.

Keywords: neuromophic VLSI, depressing synapse, spiking neuron, recurrent neural network, spike-timing dependent plas-
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1. Introduction

Although neurons in the cerebral cortex have firing
variations, they often synchronize very precisely [2–4].
The discovery of this synchronous phenomenon was al-
most concurrent with the appearance of synchronization
(clock skew) problems in digital large-scale integrated cir-
cuits (LSIs), which are due to the device’s parasitic ca-
pacitances and resistances. Semiconductor device mis-
matches have also recently become even more common
with the rapid development of sub-micron fabrication pro-
cesses. Since guaranteeing an appropriate timing margin
has so far been difficult, major LSI designers have started
using advanced genetic algorithms in post-manufacturing
processes to calculate the required margin [5].

Against such a background, reports describing that the
population of neurons, each of which has markedly larger
variations than present semiconductor devices, exhibits ex-
ceptionally accurate synchronization have been extremely
inspiring because neurons could provide a possible way to
solve the clock skew problem in digital LSIs. A neural net-
work model with depressing synapses that exhibits such
precisely timed synchronization even in a noisy environ-
ment was recently proposed by Fukai and Kanemura [1].
In this paper we designed analog MOS circuits that ‘qual-
itatively’ imitate this network model. The circuit is con-
structed with silicon neurons and depressing synapse cir-
cuits. Using a simulation program with integrated cir-
cuit emphasis (SPICE), we demonstrate that depressing
synapses facilitate precise synchronization among silicon

neurons. Since a higher tolerance to external noises could
be achieved by introducing spike-timing dependent plas-
ticity (STDP) learning in the network model [1], we also
propose an analog circuit for the STDP learning.

2. Precisely Timed Pulse Synchronization Network

Let us briefly review a neural network model for pre-
cisely timed synchronization and its dynamic behavior.
Then we will introduce two basic MOS circuits that imi-
tate the integrate-and-fire neurons and depressing synapses
used in the neural network model.

2.1 Network model

The dynamics of a neural network model for precisely-
timed synchronization [1] are given by

τm
dVi

dt
= −(Vi − Vrest)− 1
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τi
dV

dt
= −(Vi − Vrest)− gie(V − Vsyn)

where Vi and V represent the membrane potentials of
the i-th pyramidal (integrate-and-fire) neuron and an in-
terneuron;Ei the postsynaptic potential of thei-th pyra-
midal neuron;τm,e,i the time constants of pyramidal neu-
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Fig. 1　 Neural network model for precisely-timed pulse syn-
chronization
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Fig. 2　 Silicon neuron with conventional excitatory and in-
hibitory synapses

rons, excitatory synapses, and interneurons;N the num-
ber of pyramidal neurons;R the positive-feedback connec-
tivity between the pyramidal neurons as described below;
Vrest,syn,cl the resting potential of pyramidal neurons, de-
pressing synapse, and interneurons;ti the time at which the
i-th input spike is given;cij the binary representing the ex-
istence of feedback connections between thei-th andj-th
pyramidal neurons; andgee,ei,ie the synaptic conductance
between excitatory-to-excitatory, excitatory-to-inhibitory,
and inhibitory-to-excitatory neurons.

Figure 1 illustrates the network model. Four pyrami-
dal neurons (triangles) are shown. All of the outputs of the
pyramidal neurons are sent to an interneuron (circle in the
figure) through excitatory synapses, whereas the interneu-
ron inhibits all of the pyramidal neurons through inhibitory
synapses. Outputs of the pyramidal neurons are ran-
domly connected to pyramidal neurons through depressing
synapses (R represents the connection ratio). Since these
synapses provide positive feedback connections to pyrami-
dal neurons [1], firing one pyramidal neuron induces firing
of other pyramidal neurons, which results in synchronous
firing of pyramidal neurons. The divergence due to the pos-
itive feedback is attenuated by the interneuron that inhibits
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Fig. 3　 Depressing synapse circuit

all of the pyramidal neurons.

2.2 Silicon neurons and depressing synapse circuits

Asai and Kanazawaet al. proposed using silicon neu-
rons and hardware depressing synapses to implement func-
tional spiking neural networks on analog LSIs [6, 7]. We
introduce using silicon neurons and depressing synapse
circuits to construct the network model described in the
preceding subsection and explain the circuit’s operational
principles.

Figure 2 shows a circuit diagram of a silicon neuron
that imitates the basic operations of an integrate-and-fire
neuron. Excitatory and inhibitory synapses are constructed
by pMOS andnMOS current mirrors that receive input
spikes as currents. Delayed synaptic potentials (Vinh and
Vexc) are generated by capacitorsC1 andC2. The exci-
tatory postsynaptic current generated byVexc chargesC3

and consequently increases the membrane potentialUi,
whereas the inhibitory postsynaptic current generated by
Vinh decreases it. An increase in the membrane potential
in the soma circuit induces an increase in potentialVi by
chargingC4. Thus, when the membrane potential exceeds
a certain threshold, the membrane node (Ui) is suddenly
shunted by transistor M1. Although the shunted current
increases exponentially with increasing membrane poten-
tial, the current is then decreased whenC4 is discharged
by M4 with control voltageVB. This sudden increase and
decrease of shunting currents generate a spike. The spike
output is obtained by the current of transistor M2 and con-
verted to voltage by the diode-connected transistor M3.
For the detailed dynamics and mathematical explanations,
see ref. [6].

Figure 3 shows a MOS circuit for a depressing synapse
constructed with apMOS current mirror (M3, M4 and M5)
and pMOS common-source amplifier (M2 and M4). It
should be noticed that M4 of the common-source ampli-
fier is shared by the current mirror with M5. When there is
no input (current), voltageVe at junction A is zero because
of a leak current from transistor M2. Therefore, transistor
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Fig. 4　 Circuit diagram of network model with two pyramidal
neurons and one interneuron: Each pyramidal
neuron circuit has positive feedback connection
through nondepressing (NDS) or depressing syn-
apses (DS).

M1 is on. When there is an input current that increasesVe,
M1 is turned off. The current is therefore mirrored to out-
putIout through transistor M1. Because there is a parasitic
capacitance (Cdep) at junction A, the increase inVe has a
short time delay. Therefore, M1 is turned on for a short
time, and the output current is generated. When the input
current becomes zero again, M2 discharges the capacitance
Cdep, andVe returns to zero. Remarkably, the Mirror effect
of the pMOS common-source amplifier, which amplifies
the value of additional parasitic capacitance between the
drain and gate terminal of M4, increases this discharging
time. When the spike current is given at a short interval and
subsequent spikes enter beforeVe returns to zero, the am-
plitude of the output spikes decreases whenVe increases.
Because the current of transistor M2 increases monotoni-
cally whenVB increases, the time untilVe returns to zero
decreases. Thus by adjusting voltageVB, the duration of
the depression can be changed. Notice that, whenVB is
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Fig. 5　Membrane potentials of pyramidal neuron circuits for
short time input spike trains through nondepress-
ing (NDS) or depressing synapses (DS)

set t0Vdd, the circuit behaves as a nondepressing synapse
becauseVe is zero and M1 is always on.

Neural network hardware that is qualitatively equiva-
lent to the network model shown in Fig. 1 is illustrated
in Fig. 4. To evaluate basic operations of the network
hardware, we used two silicon neurons for pyramidal neu-
rons and one silicon neuron for an interneuron. Outputs
of the pyramidal neuron circuits are sent to the interneu-
ron circuit through nondepressing excitatory synapses con-
structed withpMOS current mirrors, whereas the output of
the interneuron circuit is connected to nondepressing in-
hibitory synapses (nMOS current mirrors) of the pyrami-
dal neuron circuits. Outputs of the pyramidal neuron cir-
cuits are also fed back to themselves through nondepress-
ing or depressing synapses, each of which is an excitatory
connection. The network accepts external spikes at termi-
nals IN1 and IN2 and produces the output spikes at termi-
nals OUT1 and OUT2.

3. Circuit Simulation Results

We used a simulation program with integrated circuit
emphasis (SPICE) to evaluate the proposed circuit with
MOSIS parameters (Vendor AMIS, feature size: 1.5µm).
All the transistor dimensions (channel width and length)
were fixed at 2.3 and 1.5µm, except for the channel length
of M5 in depressing synapse circuits. To compare the ef-
fects of depressing synapses on timing precision of syn-
chronization among pyramidal neurons, we evaluated the
network with nondepressing and depressing synapses for
feedback connections between pyramidal neurons.

Figure 5 shows membrane potentials of a pyramidal
neuron circuit in response to short time burst spike inputs
(five spikes with interspike intervals of 500µs) through
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Fig. 6　 Changes in amplitude of output of depressing synapse
circuit against firing rate of presynaptic neuron
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Fig. 7　 Output spike trains of pyramidal neuron circuits with
nondepressing synapses

nondepressing and depressing synapse circuits. Ampli-
tudes of spike inputs,Vdd, Cdep, andVB were set at 10 nA,
5 V, 100 fF, and 350 mV. The channel length of M5 was
set at 3µm for depressing synapses and 6.5µm for nonde-
pressing synapses, which evoked on average the same exci-
tatory postsynaptic potential (EPSP), i.e., charges in mem-
brane capacitances during the burst spike input were fixed
to constant values regardless of the type of synapse (nonde-
pressing or depressing). This result ensures that the EPSP
generated by the depressing synapse circuit has a larger
response at the burst onset than that of the nondepressing
synapse circuit. Figure 6 shows the change in amplitude of
the output spike against the input firing rate whereVB was
set at 0.1, 0.2, and 0.3 V. As the spike frequency increases,
the amplitude of the output pulse decreased. By increas-
ing VB, the cutoff frequency was successfully shifted to-
ward the higher frequency (toward the nondepressing op-
eration).

Based on the extracted parameter results of nonde-
pressing and depressing synapse circuits, we evaluated the
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Fig. 8　 Output spike trains of pyramidal neuron circuits with
depressing synapses

Table 1　Comparison of results averaged timing jitters and their
standard deviations (σ2) between nondepressing
(NDS) and depressing synapses (DS)

NDS DS
average jitter (µs) 0.92 0.82

σ2 (µs) 0.36 0.21

timing precision of synchronization in the network. In
the following simulations, the input spike frequency was
fixed at 2 kHz. Capacitance values ofCinter,1, Cinter,2,
Cpyr,1, andCpyr,2 were set at 1 pF, 100 fF, 300 fF, and
1 pF, whereas capacitors of nondepressing inhibitory and
excitatory synapses were removed in this simulation (Ci =
Ce = 0). The neuron’s bias voltagesVB1 andVB2 were
set at 650 and 560 mV. Figures 7 and 8 show output spike
trains of pyramidal neuron circuits (V1 andV2 in Fig. 4)
when nondepressing and depressing synapses were used to
connect pyramidal neurons to each other. In both figures,
each pyramidal neuron circuit tends to be synchronized in
the phase space. For a simple evaluation of the synchro-
nization, we calculated

S(t) = H(V1(t)− θ)×H(V2(t)− θ) (1)

whereH(·) represents the step function andθ = 4.2 V.
WhenV1 andV2 are fired simultaneously at timet, S(t) be-
comes 1. Normalizing neuron circuit’s intrinsic firing fre-
quency at the ratio of 3µm (depressing) to 6.5µm (nonde-
pressing),

∑40 ms
t=0 S(t) was 6 for nondepressing whereas

it was 17 for depressing synapses, which quantitatively
showed an improved synchronization between neuron cir-
cuits when depressing synapses were used. We also calcu-
lated the timing jitters of output spikes of pyramidal neu-
ron circuits. Table 1 shows a comparison of the results
of averaged timing jitters and their standard deviations
(σ2) between nondepressing and depressing synapses. We
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found that when depressing synapse circuits were used, the
average jitter was 0.1µs better than that of nondepress-
ing synapse circuits. In addition, values of the standard
deviation were 60 % better than those of nondepressing
synapse circuits. Therefore, we concluded that depress-
ing synapse circuits improve the timing precision of syn-
chronization. Remember that an EPSP generated by a de-
pressing synapse circuit has a larger response at a spike
onset than that of a nondepressing synapse circuit (Fig. 5).
When nondepressing synapses are used, several spikes are
required to evoke enough EPSPs to fire, whereas EPSPs
evoked by depressing synapses easily make a pyramidal
neuron fire with a few spikes, e.g., even a single spike
is sufficient if the threshold potential is set at a very low
value. The resultant firing gives rise to the subsequent fir-
ing of other pyramidal neurons, which results in fast syn-
chronization among all of the pyramidal neurons.

Synaptic depression is indeed able to detect partial
synchrony in the burst times [8]. With nondepressing
synapses, the postsynaptic membrane potential follows the
presynaptic mean firing rate and is able to be set contin-
uously below the threshold of a neuron. With depressing
synapses, however, the partially synchronized bursts push
the postsynaptic membrane potential across the threshold
repeatedly during stimulus.

4. MOS Circuit for STDP Learning

According to the Hebb principle, synapses increase
their efficacy if two connected neurons are simultaneously
fired. Simultaneous is to be defined by some time window
of coincidence. This window of coincidence has being a
function of the exact timing of the activity of the presynap-
tic and postsynaptic neuron, and this phenomenon is called
spike-timing-dependent plasticity (STDP). By introducing
STDP learning in the original network, Fukai and Kane-
mura demonstrated that the network exhibited robust syn-
chronization in a noisy environment [1]. In this section, we
propose a novel analog circuit emulating the STDP learn-
ing. The circuit consists of two basic circuits: a spike-
timing detector and an analog memory circuit.

To construct a spike-timing detector, we used a simple
correlation neural network [9–11]. Figure 9 shows a lo-
cal correlation scheme used to account for timing-sensitive
responses of output neurons to input spike trains. A prim-
itive correlation neural network consists of two input neu-
rons (P1 and P2), a delay neuron (D), and a correlator (C),
as shown in Fig. 9(a). The arrival of spikes from P1 at the
correlator is delayed by the delay neuron. The output is a
correlation value representing the product of delayed and
undelayed signals from D and P2.

When an input spike is given to P1 and then to P2 within
the timets, which is longer than the delay timetd, the de-
layed and undelayed signals from D and P2 do not coincide
at the correlator, as shown in Fig. 9(b). If an input spike is
given to P1 and then to P2 in a time equal to the delay time,
the delayed and undelayed signals coincide at the correla-
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Fig. 9　Primitive correlation neural network consisting of two
input neurons (P1 and P2), delay neuron (D), and
correlator (C)

tor [Fig. 9(c)]. Namely, the output signal of the correlator
reaches its maximum at the point of coincidence. On the
other hand, if an input is given to P1 and then to P2 in a
time shorter than the delay time, the output signal mono-
tonically decreases as the time decreases [Fig. 9(d)]. Thus,
the network can measure the degree of temporal difference
by monotonically increasing output signals as the spike in-
tervals between P1 and P2 decrease.

Figure 10 show a circuit diagram of spike-timing de-
tectors implementing the correlation neural networks. The
circuit consists of a delay circuit (a source-common ampli-
fier and a capacitor), which we denote CMA in Fig. 10(b);
a pMOS unity-gain amplifier (UGA); and a current con-
verter (diode-connected MOS transistor DCM). A circuit
shown in Figs. 10(a) and (b) detects sequential inputs of
pre-to-post spikes. If one spike input is given to terminal
pre and then the subsequent spike input is given to terminal
post (tpost− tpre ≡ ∆t > 0), Vpot increases because input
of terminalpre is delayed by the source-common ampli-
fier, while the unity-gain amplifier that accepts the delayed
voltage is driven by thepost input. Note that the source-
common circuit amplifies not only the pre voltage input
but also the decay time due to the Miller effect. Since the
output of the unity-gain amplifier (Vpot) is sent to a diode-
connectednMOS transistor, we can obtain a current output
as a result of the current inputs (terminalspre andpost).
Similarly, Figs. 10(c) and (d) show the inverted circuit of
Figs. 10(a) and (b) that detects sequential inputs of post-
to-pre spikes (∆t < 0).

An analog memory circuit for STDP learning is illus-
trated in Fig. 11. The circuit consists of apMOS differen-
tial pair, a storage capacitor (Cmemory), andpMOS and
nMOS current sources that receive the output of spike-
timing detectors (Vpot andVdep) constructingpMOS and
nMOS current mirrors. The storage capacitor is dis-
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Fig. 11　 Analog memory circuit for weight storage

charged (or charged) by pre-to-post (or post-to-pre) input
spikes throughVpot (or Vdep), e.g., when∆t > 0, Vpot

is increased and thus the storage capacitor is discharged.
Synaptic weight strengthw between pre and post neurons
is defined by the ratio of input currentIin to output current
Iout and controlled by the difference between capacitor
voltageVmem and reference voltageVref . Initially Vmem

is set toVref by manual reset switching, i.e.,Iout = Iin/2
and thusw = 2. When all the transistors operate in their
subthreshold regions, weight strengthw is given by

w =
Iin

Iout
=

1
f(Vmem − Vref)[

f(x) =
1

1 + exp(−κx/VT )

]

whereκ represents the effectiveness of the gate potential,
and VT ≡ kT/q ≈ 26 mV at room temperature (k is
Boltzmann’s constant,T the temperature, andq the elec-
tron charge) [12,13].
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Fig. 12　 Simulation results of STDP circuit

Figure 12 shows simulation results of the proposed
STDP circuit. The horizontal and vertical axes represent
tpost − tpre (∆t) and capacitor voltageVmem. The power-
supply and reference voltages were set at 5 and 2.5 V. The
memory capacitance value was set at 500 fF. As expected,
the circuit mimicked basic characteristics of STDP learn-
ing; however, the asymmetry characteristic was observed.
This is simply due to the unbalanced saturating properties
of pMOS andnMOS current sources in Fig. 11, which
could be improved by using relatively long channels for
the current sources.

5. Conclusion

We designed a neural network circuit to demonstrate
precisely timed synchronization among silicon neurons
with depressing synapse circuits. The network circuit
was designed using popular metal-oxide-semiconductor
(MOS) devices. The key to synchronizing neurons pre-
cisely was introducing positive feedback to the neurons
and using depressing synapses instead of nondepress-
ing (conventional) synapses for the feedback connections.
Consequently, in our demonstration assuming a 1.5-µm
CMOS process, precision was improved by 60% when de-
pressing synapse circuits were used instead of nondepress-
ing synapses. Furthermore, we designed a novel synapse
circuit that qualitatively mimics spike-timing dependent
plasticity (STDP) learning characteristics. By circuit sim-
ulations, we demonstrated the learning characteristics.
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