
FPGA-Based Design for Motion Vector Estimation Exploiting High-Speed Imaging
and Its Application to Motion Classification with Neural Networks

Masafumi Mori1, Toshiyuki Itou1 , Masayuki Ikebe1, Tetsuya Asai1,
Tadahiro Kuroda2 and Masato Motomura1

1Graduate School of IST, Hokkaido University
Kita 14, Nishi 9, Kita–ku, Sapporo 060–0814, Japan

E-mail: mori@lalsie.ist.hokudai.ac.jp, asai@ist.hokudai.ac.jp

2Faculty of Science and Technology, Keio University
Hiyoshi 3–14–1, Kohoku-ku, Yokohama,

Kanagawa 223–8522, Japan

Abstract

In this study, we propose an architecture for estimating mo-
tion vectors by searching for one neighbor pixel in high-speed
images and a machine learning algorithm that uses the es-
timated motion vectors. In high-speed imaging, the motion
of pixels between frames is considerably small. Our archi-
tecture estimates motion vectors by assuming that the pixels
move less than one pixel between frames. We verified that our
method could classify images into two classes, i.e., danger-
ous (something is approaching) or safe (others), by employ-
ing a simple perceptron after extracting the features of the
estimated motion vectors using a method based on Poggio’s
HMAX (Hierarchical Model and X) model. We used the tar-
get images captured by an in-vehicle camera for learning and
verified that another set of images could be classified using
our method. We confirmed that the proposed architecture can
estimate motion vectors using a small number of operations
and perform classification based on machine learning.

1. Introduction

Image processors that can be installed in portable terminals
such as smartphones are being actively developed [1]. Tradi-
tionally, architectures used for complex processing consisted
of multiple connected processors or memory components on
a printed circuit board. However, this led to a significant in-
crease in the size of the board, and a low rate of data trans-
mission between devices [2]. Thus, a method was devised
that integrated chips and connected them in three dimensions
[3]. Using this method, the chip area was reduced and the
data rate between chips improved. We expect that the data
rate will be considerably increased in the near future, open-
ing up a new field of modern semiconductor applications. For
example, we may assume that images captured by an image
sensor at 1,000 fps will be directly transmitted to an image
processor. In this case, the interframe differences become
smaller as the video frame rate increases, which means that
the search ranges used for motion vector estimation by block

matching decreases. Therefore, motion vectors can be esti-
mated using a small number of calculations. In the present
study, we aimed to apply machine learning to motion vectors.
Therefore, we devised a method that allows motion vectors,
to be estimated using our proposed architecture and their use
for machine learning.

In this study, we developed an architecture for estimat-
ing motion vectors based on a small number of calculations.
Our architecture estimates motion vectors by assuming that
a pixel at specific coordinates moves less than one pixel be-
tween frames. Furthermore, we propose a method that classi-
fies images into two classes, i.e., dangerous (an object is ap-
proaching) or safe (others), using a simple perceptron, after
extracting the features of the motion vectors estimated by the
architecture using a method based on Poggio’s HMAX (Hier-
archical Model and X) model [4]. We verified that machine
learning was possible using our feature extraction method be-
cause a simple perceptron can only classify linearly separable
problems. Therefore, we used target images captured with a
high-speed camera or an in-vehicle camera for learning, and
then we verified that the same or similar images could be clas-
sified with our proposed method.

2. Motion Vector Estimation for High-Speed Imaging

2.1 Proposed algorithm

In addition to conventional optic-flow based motion esti-
mation [5], a block-matching method can be used as a prac-
tical algorithm for detecting motion in moving images [6].
This block-matching method requires many calculations, re-
sulting in a long execution time. To reduce the processing
time of the block-matching method, it is necessary to reduce
the search range. However, the block-matching method has
low accuracy if the search range is reduced in advance. In
high-speed imaging, the motion of a pixel at specific coor-
dinates becomes considerably small between frames. In the
present study, therefore, we estimate motion vectors by as-
suming i) the use of high-speed video cameras and, conse-

Journal of Signal Processing, Vol.18, No.4, pp.165-168, July 2014

SELECTED PAPER AT NCSP'14

Journal of Signal Processing, Vol. 18, No. 4, July 2014 165

input
image

write
cost calculation

compare cost

sum of absolute
difference (SAD)

(b) Proposed algorithm for motion vector estimation

time

motion vectors

match

(a) Image of division for block matching

direction : west motion vectorimage (Ft)

Ft+1
Ft

image (Ft+1
)

Figure 1: Process flow of proposed algorithm for motion vector estimation

input
image

serial input

(b) calculation of costSE

(a)

target
block

pixel of template block

search block

search range

timing of read
template block

Figure 2: Sequential cost calculation timings

quently, ii) pixels move less than one pixel between frames.
We set the nearest-neighbor pixel in the target block as the
search range and then estimate the motion vector.

Figure 1(a) shows how the search range is divided for im-
ages. We define Ft and Ft+1 as two consecutive frames in
time. The search range is 5 × 5 pixels. We divide the im-
ages into search ranges and motion vector estimation is per-
formed for each search range, where the block size is 3 × 3
pixels. The target block is a center search block with a search
range of Ft+1. The search blocks cover eight directions by
moving one pixel from the center block in the search range.
Our architecture estimates the match between a target block
and a search block in the search range. The sum of abso-
lute differences (SAD) is used to determine a suitable motion
vector. We denote the SAD as cost{DIRECTION}, for exam-
ple, costNW represents the cost between the northwest block
and the center block, while costN represents the cost between
the north block and the center block. Our block-matching
method is applied by determining the minimum cost. Fig-
ure 1(b) shows the motion vector estimation algorithm. Our
architecture calculates the costs using the pixels from both
frames. To facilitate real-time processing, our architecture
rewrites a pixel from Ft+1 sequentially after calculating the
costs using a pixel from Ft. The number of SAD calculations
is decreased by reducing the search range. Our architecture

cost
buffer

cost
buffer

cost
buffer

cost
buffer

cost
buffer

read
this pixel

write this pixel

line buffer
+ 1 pixel

(a)

(b) number of cost buffers

number of
Ft+1

 buffers

Figure 3: Estimated number of Ft+1 buffers

can estimate the motion vectors within a short period of time.

2.2 Proposed architecture

We here explain the architecture used for motion vector es-
timation. Figure 2(a) shows the timing when pixels in the
target block are read. Note that the inputs always flow to out-
puts in a straightforward manner in this model. Figure 2(b)
shows the process used to calculate costNW. CostNW is the
SAD for a target block and the search block located northwest
of the center of the search block. When a target block pixel
is inputted, our architecture calculates the sum of the abso-
lute difference between the pixels in the target block and the
pixels in the corresponding search block. Our architecture si-
multaneously calculates the SADs in eight directions for the
other search blocks.

Figure 3(a) shows that several registers are required to
rewrite the frame Ft. If the gray pixels are used as inputs,
the black pixels are not used as search blocks after calculat-
ing the costs. Our architecture rewrites the pixels. The buffers
required to hold the pixels for Ft+1 contain the line buffer and
one pixel. Figure 3(b) shows the number of buffers needed to
store the intermediate results of the cost calculations. The im-
ages are input in series. The pixels in an image are used as
inputs in sequence across the search range. During the cal-

166 Journal of Signal Processing, Vol. 18, No. 4, July 2014

Table 1: FPGA implementation summary
Input Res. Depth CLK LUT Reg. Block mem.

10×10 16-bit 80 MHz 1053 572 12736 bits

Ft+1
Ft

Figure 4: Schematic image of motion vector estimation

culation of a cost in a search range, our architecture needs
to hold costs in another search range. The cost calculations
for a search range require nine buffers to hold the interme-
diate cost calculations. The total number of required buffers
for the cost calculation is the number of blocks per line × 9
[= 5 × 9 = 45, in case of an example shown in Fig. 3(b)].

2.3 FPGA implementation results

We analyzed the results obtained using the proposed meth-
ods based on the field-programmable gate array (FPGA) im-
plementation of the motion vector estimation architecture.
The proposed system for motion vector estimation was im-
plemented using a commercial FPGA board (MU-200SX II
with Altera Stratix II). Table 1 summarizes the implemen-
tation setup. The input images contained 10 × 10 pixels.
The timing clock of the architecture was operated at 80 MHz,
which is the highest operating clock speed for a MU-200SX
II system. We verified that our architecture could operate at
a clock speed of 80 MHz. Figure 4 shows one of the test
patterns used for motion vector estimation. We assumed that
the pixels moved less than one pixel between frames. We
show the results of generating an image from the output sig-
nal of the FPGA. We confirmed that the desired results were
obtained.

3. Machine Learning of Motion Vectors

Figure 5 shows a summary of the proposed machine learn-
ing method used for motion vectors. Images must be sub-
jected to feature extraction by machine learning before they
can be used as inputs by a neural network [7]. An image is
separated into specific block sizes and the direction and size
of each vector are extracted, as shown in Fig. 5(a). Next,

1.0

1.0

0

0

0

0.8

0.5

0.7

0.8

0.6

0.4

w
1

w
2

w
3

w
8

w
9

w
10

w
11

w
13

w
12

w
14

w
15

.

.

.

.

.

.

-1

w
0

5

10

00

0

8

0

18

13

15

10

8

0

w
7

output

supervised
data

(a)

(b)

(c)

(d)

(e)

(f)

θ

Figure 5: Summary of machine learning process for motion
vectors

the sums of the vector sizes in a block are calculated in each
direction and the values are normalized to values from 0 to
1, as shown in Fig. 5(b). Furthermore, the summed vector
sizes are calculated for each combination of two vectors and
the values are normalized to values of 0 to 1, as shown in
Fig. 5(c). All blocks are processed in a similar manner, as
shown in Fig. 5(d). This feature extraction method is based
on Poggio’s HMAX model [4]. Next, the set of values is used
as an input for a simple perceptron. In the simple percep-
tron, the values are connected by weights (from w1 to w15 in
Fig. 5), where the output is 1 if the sum of the values exceeds
a threshold value (w0 in Fig. 5), whereas the output is –1 if
the sum of the values does not exceed the threshold value, as
shown in Fig. 5(e). The user provides supervised data when
the simple perceptron is learning, as shown in Fig. 5(f). The
simple perceptron compares the output with the supervised
data and the connected weights are updated if the two values
are different.

We verified that our method could classify images recorded
using a high-speed camera or an in-vehicle camera into two
classes, i.e., dangerous or safe, as mentioned earlier. We con-
ducted a simulation where the algorithm was implemented in
C language.

First, we used a high-speed camera that operated at 1,000
fps to record various types of motion made by objects (e.g.,
a space shuttle model or a box), which were verified using
their images. The recorded images were used to estimate the

Journal of Signal Processing, Vol. 18, No. 4, July 2014 167

safe

dangerous

Figure 6: Classification of images recorded using high-speed
camera

motion vectors, where we assumed that a pixel at specific co-
ordinates moved less than one pixel between frames. Next,
we integrated 80 frames of the motion vectors to calculate the
vector size. The image size was 400 × 300 pixels and the
block size used was 40 × 30 pixels. The simple perceptron
learned 800 dangerous samples and 1,200 safe samples, and
learning converged when the simple perceptron had learned
all of the samples approximately 50 times. Figure 6 shows
the results for the motion of the space shuttle model, which
was recorded using a high-speed camera and classified by the
simple perceptron. The samples were used for learning and
they were classified with our method.

Furthermore, we verified the suitability of our method us-
ing images captured by an in-vehicle camera. For these im-
ages, the optical flow was detected as a motion vector by
block matching. The image size was 400 × 300 pixels and the
block size used was 40 × 30 pixels. The simple perceptron
learned 212 dangerous samples and 749 safe samples, and
learning converged after the simple perceptron had learned all
of the samples approximately 500 times. Figure 7 shows the
samples recorded using an in-vehicle camera and their classi-
fication results with the simple perceptron. The samples were
used for learning and they were classified using our method.

4. Summary

In this paper, we reported an ultrasimple architecture for
motion vector estimation under high-speed imaging, and pro-
posed a novel motion vector characterization module for a
linear classifier (perceptron). In general, the applications of
high-speed cameras are limited to making ultraslow-motion
pictures, but our approach may open a new application field
of high-speed cameras with motion vector processing in a
very simple manner. Furthermore, our classification results
showed that the linear classifier could discriminate supervised
patterns with 100% accuracy, which indicated that the pro-

safe

dangerous

Figure 7: Classification of images captured using in-vehicle
camera

posed motion characterization unit was able to transform the
input motion vectors to linear separation problems success-
fully.

Acknowledgment

The authors would like to thank the Semiconductor Technol-
ogy Academic Research Center (STARC) of Japan for fund-
ing this research project.

References

[1] T. Onoye: Recent trends on media processors for embed-
ded systems, The Journal of the Institute of Image In-
formation and Television Engineers, Vol. 63, No. 9, pp.
1185–1187, 2009.

[2] R. Sale, S. Wilton, S. Mirabbasi, A. Hu, M. Greenstreet,
G. Lemieux, P. Pande, C. Grecu and A. Ivanov: System-
on-chip: Reuse and integration, Proc. IEEE, Vol. 94, No.
6, pp. 1050–1069, 2006.

[3] P. Garrou, R. Ramm and C. Bower: Handbook of 3D In-
tegration: Technology and Applications of 3D Integrated
Circuits, Wiley-VCH Verlag GmbH, 2008.

[4] M. Risenhumber and T. Poggio: Hierarchical models of
object recognition in cortex, Nature Neuroscience, Vol.
2, No. 11, pp. 1019–1025, 1999.

[5] http://en.wikipedia.org/wiki/Optical flow

[6] D. I. Barnes and H. F. Silverman: A class of algorithm
for fast digital image registration, IEEE Trans. on Com-
puters, Vol. 21, No. 2, pp. 179–186, 1972.

[7] I. Guyon: Feature Extraction: Foundations and Applica-
tions, Vol. 207, Springer, 2006.

168 Journal of Signal Processing, Vol. 18, No. 4, July 2014

