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Abstract

We propose an analog current-mode subthreshold CMOS circuit implementing a piecewise linear neuromorphic oscillator. Our circuit

was derived from a piecewise linear oscillator model proposed by Matsuoka, well known as a building block for constructing a robot

locomotion controller. We modified Matsuoka’s oscillator to be suitable for analog current-mode integrated circuit implementation, and

designed and fabricated it as an analog current-mode circuit. Through circuit simulations and experimental results on a fabricated chip,

we demonstrate that our neuromorphic oscillator generates a stable oscillation, and the amplitude and frequency of the oscillation can be

controlled by tuning bias currents over a wide range. Further, we propose a compensation for device mismatch in the neuromorphic

oscillator through feedback from a coupled physical system.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Fundamental rhythmic movements for locomotor beha-
vior of animals, such as walking, running, flying, and
swimming, are generated by part of the central nervous
system called the central pattern generator (CPG) [8].
Induced by inputs from a higher level, a CPG generates
rhythmic neural activity activating muscles in the absence
of any sensory inputs, resulting in locomotor behavior of
animals. While not necessary for generating rhythmic
activity, sensory inputs regulate such rhythmic activity
over a wide range. As a result, locomotor behavior of
animals can be adapted to unpredictable environments [12].

From a point of view of nonlinear dynamics, it is
explained that rhythmic movements during locomotion
emerge as a stable limit cycle from mutual entrainment
between the neural system that includes the CPG and the
e front matter r 2007 Elsevier B.V. All rights reserved.
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physical system that interacts with a varying environment
through sensory feedback [31]. Such entrainment, termed
global entrainment, induces high adaptation to unpredict-
able environments [31].
For utilizing global entrainment to control locomotor

behavior of robots, many researchers have dedicated
efforts to designing locomotion controllers based on CPG
(e.g., [3,11,13,14,16,20,24,25,30,31,33]). Taga et al. have
used a CPG model constructed from the neural oscillator
model proposed by Matsuoka [17] in simulating for biped
locomotion [31]. Kimura et al. have used a CPG model for
quadruped robot locomotion on rough terrain [13].
Williamson has applied a CPG model for controlling
rhythmic arm movements of a humanoid robot [33].
Such CPG models consist of coupled nonlinear oscilla-

tors, each of which generates rhythmic activity for actuating
each joint of the limbs. Functions of a CPG model depend
on both dynamical properties of a nonlinear oscillator as a
component and its coupling topology. Collins et al. [7]
and Golubitsky [9] have shown common properties of
CPG models consisting of different types of nonlinear
oscillators, e.g., symmetry-breaking bifurcation [9], that
only depends on their coupling topology. However, recent
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Fig. 1. Conceptual illustration of half-center oscillator.
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findings suggest that nonlinear phenomena, such as flexible
phase-locking [25] and phase resetting [24], play key roles in
utilizing sensory feedback effectively for high adaptation
during locomotion. These phenomena depend on intrinsic
properties of nonlinear oscillators underlying a CPG model.

In neuromorphic engineering, many CPG models have
been implemented into silicon chips [2,5,15,22,23,26–29,32].
As a building block for a CPG chip, using a neuromorphic
oscillator to control the amplitude and frequency of the
oscillation over a wide range is desirable because entrainment
properties of CPG chips rely on a dynamic range of a
neuromorphic oscillator, and such entrainment properties are
also significant for utilizing sensor feedback effectively.

The aim of this work is to implement a neuromorphic
oscillator with high controllability of the amplitude and
frequency of oscillation. We focused on the piecewise linear
oscillator model proposed by Matsuoka that provides
scalability of the amplitude of oscillation [17] because such
scalability has an advantage for reflecting sensory feedback
in rhythmic pattern generation [13,30,31]. For using the
scalability effectively, we revised the model slightly, and
implemented it as an analog subthreshold CMOS circuit
using current-mode representation with a wide dynamic
range [1]. Through SPICE simulations and experiments on
a fabricated chip, we demonstrated that our circuit can
generate a stable oscillation of currents, and the amplitude
and frequency of the oscillation can be controlled over
a wide range by tuning bias currents. Further, we propose a
method to compensate device mismatch effects in a
neuromorphic oscillator exploiting sensory feedback from
a coupled physical system.

The present paper is organized as follows. In Section 2,
we introduce a piecewise linear oscillator model suitable for
analog current-mode integrated circuit implementation. In
Section 3, we describe an analog current-mode circuit for
the piecewise linear oscillator model. We demonstrated the
performance of our neuromorphic oscillator through
circuit simulations and experiments that we describe in
Section 4. We also describe a method to compensate device
mismatch effects exploiting physical feedback in Section 5.
A summary of this paper is presented in Section 6.

2. Piecewise linear oscillator models

Let us here describe two piecewise linear oscillator
models based on the concept of the half-center oscillator in
the field of neuroscience. One has been frequently used as a
component of a CPG-based controller in robotics. Another
is a version of the previous model revised to be suitable for
analog integrated circuit implementation by using current-
mode representation.

2.1. Biological concept of half-center oscillator

We here briefly review the biological concept of the half-
center oscillator to account for alternating rhythmic
activity in flexor and extensor motoneurons in locomotion
of animals [6]. Fig. 1 shows the half-center oscillator model
proposed by Brown, which consists of two neurons; a
flexor half-center and an extensor half-center, each is
connected with reciprocal inhibition. The half-centers
alternatively activate flexor and extensor motoneurons in
the absence of any pacemaker cells. Each half-center has
dynamical properties, such as self-inhibition, fatigue or
adaptation. The flexor half-center activates the flexor
muscles and suppresses the extensor half-center via
synaptic inhibition in the flexion phase; in turn, transition
from the flexion phase to extension phase occurs due to the
self-inhibition and adaptation. As in the case of the flexion
phase, the extensor half-center activates the extensor
muscles and suppresses the flexor half-center in the
extension phase.

2.2. Half-center oscillator model with piecewise linearity

Matsuoka proposed a half-center oscillator model
consisting of two neurons with piecewise linearity. The
dynamics of the half-center oscillator model are described
by the following system equations [17]:

tu

dui

dt
¼ �ui þ s� bvi � wijf ðujÞ, (1)

tv

dvi

dt
¼ �vi þ f ðuiÞ, (2)

where ui represents the inner state of the ith neuron, vi an
adaptation variable of the ith neuron ði ¼ 1; 2Þ, s a tonic
input, wij a synaptic strength between the ith and jth
neuron, b the adaptation effectiveness, tu a time constant
of the self-inhibition, and tv a time constant of the
adaptation effect. The nonlinearity of this model is given
in the form of a piecewise linear function

f ðxÞ ¼ maxð0;xÞ, (3)

where f corresponds to the output of a neuron. Depending
on the parameters, this model has a stable limit-cycle
oscillation. The stability and dynamical properties of this
model are analyzed in detail [4,10,17,18]. The amplitude of
the oscillation is proportional to the tonic input s due to the
piecewise linearity, in other words, the amplitude of the
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oscillation is scalable. The frequency and shape of the
oscillation can also be controlled by tuning the ratio of
time constants. These properties are well suited for
controlling rhythmic movements of a robot. In particular,
the scalability of the amplitude of the oscillation is
appropriate for utilizing sensory feedback [31] that plays
critical roles in adapting rhythmic movements to unex-
pected environments [8]. Focusing on such properties, this
model has been fluently used in robotics [13,30,31]. Taga
et al. have used it in simulating biped locomotion [31].
Kimura et al. have applied it to control a quadruped
walking robot on rough terrain [13]. Williamson has
applied it to control robot arm movements [33].

Fig. 2A shows closed (u1; v1) phase plane portraits of
Matsuoka’s model for different tonic inputs, s ¼ 0:5; 1:5,
and 2:5, where we set the parameters as follows: b ¼ 3:5,
wij ¼ 2:5, and tu ¼ tv ¼ 2:5. We confirmed that the
amplitude of the oscillations were proportional to the
tonic inputs.

2.3. Piecewise linear half-center oscillator model for circuit

implementation

We here introduce a piecewise linear half-center oscilla-
tor model for analog current-mode circuit implementation.
For effectively utilizing the scalability of the amplitude of
oscillation of Matsuoka’s model, we consider implement-
ing it into a silicon chip by using current-mode representa-
tion with a wide dynamic range. However, it should be
noted that the state variables of Matsuoka’s model, ui and
vi, can be both positive and negative, as shown in Fig. 2A.
For simplicity, such state variables are desirable not to
have polarity because to represent a state variable with
polarity using uni-directional currents is complex. To avoid
complexity in current-mode circuit implementation, we
revised Matsuoka’s model slightly as follows:

tu

dui

dt
¼ �ui þ f ðs� bvi � wijujÞ, (4)
Fig. 2. Phase plane portraits of (A) the half-center oscillator model proposed

implementation.
tv

dvi

dt
¼ �vi þ f ðuiÞ, (5)

where all variables and parameters are same as in (1)–(2),
and the nonlinear function f is the same as the piecewise
linear function given by (3). In this model, when ui becomes
very close to 0, the derivative of ui with regard to t turns to
positive. As a result, we can obtain a limit-cycle solution
such that all state variables are positive. Fig. 2B shows
closed (u1; v1) phase plane portraits of the revised model for
different tonic inputs, s ¼ 0:5; 1:5, and 2:5, where we set the
parameters as follows: b ¼ 5, wij ¼ 4, and tu ¼ tv ¼ 2:5.
Thus, this model is suitable to be implemented as an analog
current-mode circuit that treats uni-directional currents.
3. Circuit implementation

We here propose an analog current-mode integrated
circuit for the piecewise linear half-center oscillator model
described in the previous section.
Fig. 3 is a block diagram of the half-center oscillator

model that consists of four low-pass filters and four
piecewise linear functions. The low-pass filters can be
implemented with a current-mode low-pass filter operating
in log-domain based on the dynamic translinear principle
[19,21]. Fig. 4 is a schematic of the current-mode low-pass
filter. The circuit dynamics are expressed by the following
by Matsuoka and (B) a revised version for analog current-mode circuit
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equation:

t
dIout

dt
¼ �Iout þ I in, (6)

where I in represents the input current, Iout the output
current, and t the time constant, which is expressed by

t ¼
CUT

I t
, (7)

where C represents the capacitance, UT the thermal
voltage, and I t the bias current. The low-pass character-
istics with respect to the output current Iout are derived
from the currents relationship as a result of a translinear
GND

C

VDD

VrefVref

M1 M2 M4M3

2

Fig. 4. Schematic of the current-mode low-pass filters.

VDD

GND

low-pass filter

low-pass filter

Fig. 5. Schematic of the piecewise lin
loop formed by M1–M4 and dynamic translinear circuits
including M2 and M3 with the capacitance C, which is
descried in detail [19]. The piecewise linear function (3) can
be directly implemented with a current mirror.
Fig. 5 is a schematic of a piecewise linear half-center

oscillator circuit (hereafter called piecewise linear neuro-
morphic oscillator) consisting of four current-mode low-
pass filters and several current mirrors. The dynamics of
the circuit are expressed by the following equations:

t
dIui

dt
¼ �Iui

þ f ðIs � bIvi
� wIuj

Þ, (8)

t
dIvi

dt
¼ �Ivi

þ f ðIui
Þ, (9)

where Iui
corresponds to the inner state of the ith neuron,

Ivi
an adaptation variable of the neuron, Is a tonic input,

wij a synaptic strength between the ith and jth neuron, and
b the adaptation effectiveness. The parameters wij and
b are determined by the current transfer ratio of the current
mirrors. The time constant t can be controlled by tuning
the bias current I t as described in (7). Depending on these
circuit parameters, this circuit generates a stable limit-cycle
oscillation of the currents Iui

and Ivi
corresponding to the

state variables ui and vi in (4) and (5). Thus, the dynamics
of the piecewise linear neuromorphic oscillator are
qualitatively the same as that of the piecewise linear half-
center oscillator model described by (3)–(5).
x

x

x

xβ

low-pass filter

low-pass filter

ear half-center oscillator circuit.
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4. Results

We describe the performance of the piecewise linear
neuromorphic oscillator through circuit simulations and
experiments on a fabricated chip.
4.1. Simulation results

We simulated the proposed circuit with HSPICE using
BSIM 3v3 LEVEL 49 model parameters for AMIS CMOS
1.5-mm process. We set circuit parameters as follows: the
capacitance of the current-mode low-pass filters
C ¼ 10 nF, and the power-supply voltages VDD ¼ 1:5V
and Vref ¼ 0:35V. The gate length L of transistors were set
at L ¼ 6:0mm and the gate width W of the minimum-size
transistor was set at W ¼ 4:5mm
4.1.1. Rhythmic pattern generation

Here, we describe rhythmic pattern generation in the
piecewise linear neuromorphic oscillator. Fig. 6A presents
the waveforms of the state currents Iui

and Ivi
, where the

parameters b ¼ 5 and wij ¼ 4, and the bias currents were
set at I t ¼ 10 nA and Is ¼ 100 nA. The equilibrium
currents of the circuit are calculated by solving the
 25
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Fig. 6. Simulation results: (A) waveforms of currents and (B) phase plane portr

frequency modulation by tuning bias currents.
following equations:

dIui

dt
¼

dIvi

dt
¼ 0 ði ¼ 1; 2Þ (10)

that yield

Iu0 ¼ Is � bIv0 � wijIu0 ; Iv0 ¼ Iu0 , (11)

where Iu0 and Iv0 represent the equilibrium currents. In this
simulation, the equilibrium currents were Iu0 ¼ Iv0 ¼

Is=10 ¼ 10 nA. Fig. 6B shows a closed (Iu1 , Iv1 ) phase plane
portrait of the circuit. These results confirmed that the
circuit generated a stable oscillation.
4.1.2. Frequency and amplitude modulation

The amplitude of the oscillation was proportional to the
bias currents I s as a result of the scaling of the currents Iui

and Ivi
due to Is. We changed the amplitude of the

oscillation by tuning I s from 10 nA at 0 s to 100 nA at
1000ms as shown in Fig. 6C. We also changed the
frequency of the oscillation by tuning the bias current I t
from 10 nA at 0 s to 50 nA at 1000ms as shown in Fig. 6D.
The controllability of the amplitude and frequency of the
oscillation are suitable for a neuromorphic oscillator as a
building block for constructing a CPG-based controller.
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4.2. Experimental results

We designed and fabricated a prototype chip of the
proposed circuit with a scalable CMOS rule: MOSIS AMI,
n-well double-poly double-metal CMOS process, l ¼
0:8mm and feature size: 1.5-mm (Fig. 7). Fig. 8 is a
micrograph of the piecewise linear neuromorphic oscillator
containing four current-mode low-pass filters and several
current-mirrors (chip size: 2:25� 2:25mm2). We set the
gate length of the transistors L ¼ 9:6mm. The parameters
b ¼ 5 and wij ¼ 4 were determined by the current transfer
ratio of the current mirrors at layout. For measurement, we
used the off-chip capacitance C ¼ 1mF and the supply
voltages VDD ¼ 1:5V and Vrf ¼ 0:35V.

Fig. 8A presents the waveforms of measured currents Iui

and Ivi
, where the bias currents were set at I t ¼ 100 nA and

Is ¼ 200 nA. Fig. 8B shows a closed (Iui, Ivi
) phase plane

portrait. These results show that the circuit generates stable
oscillation that is qualitatively the same as that of
simulation results. However, we found the influence of
device mismatch on the oscillation, such as asymmetry in
the waveforms of the currents and a distortion in the phase
plane portrait.
Fig. 7. Micrograph of a fabricated chip.

 70

0

5

 70

0
5

time (sec)

time (sec)

Fig. 8. Experimental results: (A) waveforms of currents and (B) pha
5. Device mismatch compensation of exploiting physical

feedback

Here, we propose a compensation for the influence of the
device mismatch of the piecewise linear neuromorphic
oscillator exploiting sensory feedback from a coupled
physical system.
5.1. Feedback control loop including nonlinear oscillator and

physical system

In the following, we consider a feedback control loop
including a nonlinear oscillator and a physical system
as shown in Fig. 9. Williamson has investigated entrain-
ment properties of such a loop, and applied the
entrainment properties for controlling rhythmic arm
movements of a humanoid [33]. As a result of the
entrainment of the feedback control loop, the amplitude
and frequency of oscillation of both the nonlinear
oscillator and the physical system are modulated. The
necessary condition of the stable oscillation is given by the
following equation:

jCðsÞPðsÞjX1, (12)

where CðsÞ and PðsÞ represent transfer functions of the
nonlinear oscillator and the physical system, respectively.
   25

   25
0

0

70

60

se plane portrait of the piecewise linear neuromorphic oscillator.

OSC ?Physical System

Fig. 9. Block diagram of feedback control loop including nonlinear

oscillator (OSC) and physical system.
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Table 1

Parameters Without feedback With feedback

x 1.0 1.0

on (rad/s) 10 10

G (rad/nA) 0.05 0.02

z (nA/rad) 0 0

Z (nA s/rad) 500 0
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5.2. Reducing influence of device mismatch through physical

feedback

We here consider exploiting the transfer characteristics
of the feedback control loop to reduce the influence of the
device mismatch in the piecewise linear neuromorphic
oscillator. The transfer function of the feedback control
loop TðsÞ is described by the following equation:

TðsÞ ¼
CðsÞPðsÞ

1þ CðsÞPðsÞ
, (13)

where CðsÞPðsÞ is the input loop transfer function. When
we regard CðsÞ as the transfer function of the piecewise
linear neuromorphic oscillator, the device deviation of the
neuromorphic oscillator can be regarded as the deviation
of CðsÞ, namely, dCðsÞ. When we differentiate TðsÞ with
respect to s, then we obtain the following equations:

qTðsÞ

qCðsÞ
¼

CðsÞ

ð1þ CðsÞPðsÞÞ2
¼

1

1þ CðsÞPðsÞ
�

TðsÞ

CðsÞ
, (14)

that yield

dTðsÞ

TðsÞ
¼

1

1þ CðsÞPðsÞ
�
dCðsÞ

CðsÞ
¼ SðsÞ �

dCðsÞ

CðsÞ
, (15)

where we assumed that PðsÞ is invariant. Here, dTðsÞ

represents the deviation of TðsÞ, and SðsÞ the sensitivity
function. For reducing the influence of the device deviation
of the piecewise linear neuromorphic oscillator dCðsÞ on
the transfer characteristics of the entire system, the
following condition:

jSðsÞj ¼ j1þ CðsÞPðsÞj�151 (16)

should be satisfied.
Fig. 10. Configuration of control sys
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5.3. Transfer characteristics of physical system

We here consider a joint actuator with single degree-of-
freedom (DOF) as a physical system. The dynamics of the
joint actuator is given as follows:

M €yþ k _yþ cy ¼ t, (17)

where y is the joint angle, M the moment of inertia of the
joint actuator, k the stiffness parameter, and c the damping
parameter. We introduce a simple proportional differential
(PD) controller generating the driving force t:

t ¼ KPðŷ� yÞ � KD
_y, (18)

where ŷ is the equilibrium angle. We assumed that y and _y
can be measured quite accurately. The parameters KP and
KD represent the proportional and differential parameters,
respectively. The physical system including the PD
controller (Fig. 10) is regarded as a standard second-order
system, then the transfer function of the system PðsÞ is
tem including feedback loop D.
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given as follows:

PðsÞ ¼
o2

n

s2 þ 2xonsþ o2
n

; x ¼
KD þ c

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MðKP þ kÞ

p ,

on ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KP þ k

M

r
, ð19Þ

where on is the natural angular frequency of the system,
and x the damping parameter. Thus, PðsÞ can be regulated
by tuning KP and KD.

5.4. Transfer characteristics of piecewise linear

neuromorphic oscillator

The transfer function of the piecewise linear neuro-
morphic oscillator CðsÞ cannot to be derived analytically due
to the nonlinearity. Thus, we estimated CðsÞ from simulation
results, such as shown in Fig. 11. The input IðtÞ was given
into the piecewise linear neuromorphic oscillator as follows:

t
dIu1

dt
¼ �Iu1 þ f ðIs � bIv1 � wIu2 � IðtÞÞ, (20)

t
dIv1

dt
¼ �Iv1 þ f ðIu1Þ, (21)

t
dIu2

dt
¼ �Iu2 þ f ðIs � bIv2 � wIu1 þ IðtÞÞ, (22)

t
dIv2

dt
¼ �Iv2 þ f ðIu2Þ (23)

and we defined the output as Iout ¼ Iu1 � Iu2 . The transfer
function CðsÞ is determined by the circuit parameters. In
particular, the natural frequency is crucial for the entrain-
ment between the neuromorphic oscillator and a physical
system.

5.5. Monte-Carlo simulations

We simulated how the physical feedback reduces the
influence of the device mismatch on the operation of the
feedback control loop through Monte-Carlo simulations
using SPICE. We set circuit parameters for the neuro-
morphic oscillator as follows: I t ¼ 10 nA, Is ¼ 500 nA,
C ¼ 50 nF, b ¼ 5 and w ¼ 4. We tuned the parameters to
determine the transfer function of the physical system
including the PD controller for satisfying the conditions of
(12) and (16), as shown in Table 1. The device deviation of
the neuromorphic oscillator was defined as the threshold
deviation of transistors: sðV thÞ ¼ 0:1%.
Fig. 12 shows (y, _y) phase plane portraits of the joint

actuator without and with feedback loop obtained by 100
trials. We here defined the equilibrium angle as
ŷi ¼ GðIu1 � Iu2Þ, where G is a transformation coefficient,
and the physical feedback as S ¼ zyþ Z_y. These results
confirmed that the physical feedback could reduce the
influence of the device deviation of the neuromorphic
oscillator on the behavior of the joint actuator.

6. Conclusion

We have proposed an analog current-mode subthreshold
CMOS circuit for the piecewise linear neuromorphic
oscillator model. Our circuit consists of four current-mode
low-pass filters and several current mirrors that operate in
their subthreshold region under the low-power supply
voltages. As a result, low power consumption can be
achieved. We have confirmed that the circuit generates
stable oscillation and the amplitude and frequency of the
oscillation can be controlled by tuning the bias currents.
These characteristics of our circuit are suitable as a
building block for constructing a CPG-based controller.
Furthermore, we have considered how to reduce the
influence of the device mismatch on the circuit operation.
The compensation method using the physical feedback that
we proposed and was confirmed through Monte-Carlo
simulations. Further consideration of applying our circuit
and compensation method to implement micro robots
remains as future work. In particular, low-power con-
sumption of our chip and the physical feedback compensa-
tion method are attractive for driving underwater robots
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that move around unpredictable environments for a long
time.
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