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Abstract: We propose a novel and simple discrete reaction-diffusion model that self-organizes
striped and spotted spatial patterns. Through theoretical analyses, we show that the spatial
frequency of the generated patterns is proportional to diffusion length. Through extensive
numerical simulations, we demonstrate that the model can produce Turing-like striped and
spotted spatial patterns.
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1. Introduction
Self-organizing striped and spotted spatial patterns can be observed everywhere in nature, e.g., ani-
mal’s or tropical fish’s skin surface as well as human fingerprints, bacterial colony, artificial nanocrys-
tals, and so on [1]. Alan Turing introduced a concept of “diffusion-driven instability” for these
phenomena where diffusion enhances transition from a homogeneous state to a spatially inhomoge-
neous stable state and time development in systems undergoing this transition is described by the
sum of reaction and diffusion [2]. The transition relates to the local production/extinction of the
substance or state, and the time development for this transition relates to a transport process that
tends to dampen any inhomogeneity of the neighboring region; the system undergoing transition is
referred to as the reaction-diffusion (RD) system [3–5]. Turing proposed a model where the spatial
homogeneous structure could exhibit spatial instability with the addition of the diffusion effect. A
well-known feature of the “Turing model” is that it exhibits striped or spotted patterns that are
self-organized at the equilibrium [6–8].

Based on the Turing model, a discrete RD model that generates Turing-like patterns has been
proposed, in which, discrete dynamics for diffusion between chemical substances is introduced and all
the states (usually represented by two variables, activators and inhibitors) are represented by a single
binary variable [9]. In a previous report, we proposed an extended model where the spatial diffusion of
activators and inhibitors is described by time-dependent diffusion equations but the temporal update
for every cycle is determined by a discrete dynamics [10]. In this report, we propose the improved
model where the diffusion is described by simple “time-independent” instant diffusion and provide a
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theoretical analysis as well as extensive numerical simulation results.

2. The model
Let us start by introducing a resistor ladder model, shown in Fig. 1(a). The i-th node equation is
given by

ui−1 + ui+1 − 2ui

R
− g(ui − Vi) = 0, (1)

where ui represents the i-th node potential; R, the horizontal resistance; g, the vertical conductance;
and Vi, the input voltage of the i-th node. For 2-D resistive materials, as shown in Fig. 1(b), one may
obtain the continuous form

D∇2u(x) − g[u(x) − V (x)] = 0, (2)

where x is the space; u(x), the potential distribution; ∇ = ∂/∂x; V (x), the input potential distri-
bution; and D, the diffusion coefficient (≡ Δx2/R, Δx � 1). Obviously, if we apply input V (x) to
the bottom surface of the resistive material, the diffused distribution [u(x)] is observed on the top
surface. We employ this continuous resistive material to express “instant” diffusion of chemicals.

By introducing the following Fourier transformation

ũ(k) ≡
∫ ∞

−∞
u(x)e−ikxdx, u(x) ≡ 1

2π

∫ ∞

−∞
ũ(k)eikxdk, (3)

we obtain the response function of the resistive material [for V (x) = δ(x), where δ(x) represents the
delta function] as

ũ(k) =
α2

k2 + α2
, where α ≡

√
g

D
. (4)

The inverse Fourier transformation of ũ(k) represents the impulse response of the resistive material.
To obtain this, one may use the residue theorem with the following formula:

∫ ∞

−∞

1
k2 + α2

dk =
π

α
e−α|x|. (5)

The resulting impulse response is

u(x) =
1
2
αe−α|x|. (6)

Now, we consider two resistive ladder networks coupled with each other [Fig. 2(a)]. Each ladder
accepts common input voltage V t

i at time t. The continuous model is shown in Fig. 2(b). Here, we
assume that i) Ru > Rv and ii) the continuous system calculates the differential voltages between
u(x) and v(x) at time t. Consequently, the impulse response is given by

DoE(x) ≡ 1
2

(
αue−αu|x| − αve−αv|x|

)
, where αu,v ≡

√
gu,vRu,v

Δx2
(7)

and DoE(x) denotes the “Difference of Exponentials” kernel. The differential voltage distribution
between u(x) and v(x) for given V t(x) is thus obtained by calculating the following convolution:

(a) (b)
Fig. 1. Discrete resistive ladder and continuous resistive material.
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(a) (b)
Fig. 2. Network of two resistive ladders and continuous resistive model.

zt(x) =
∫ ∞

−∞
V t(x − X) · DoE(X) dX. (8)

Here, let us introduce the following discrete dynamics for this DoE system:

V t+1(x) = Θ[zt(x)], (9)

where Θ(·) is the piecewise linear function defined by

Θ(x) ≡
⎧⎨
⎩

1 (x > 2/β)
βx/4 + 0.5 (−2/β ≤ x ≤ 2/β)

0 (x < −2/β),
(10)

where β represents the slope gain.
When an initial step input, V 0(x) = θ(x) [θ(·): step function], is applied to the system, we obtain

z0(x) =
∫ ∞

0

DoE(x − X) dX =
{

(−e−αux + e−αvx)/2 , (x > 0)
(eαux − eαvx)/2 , (x < 0)

. (11)

Figure 3(a) plots the initial (step) input and the resulting z0(x) (diffused differential output). V 1(x),
where z0(x) ≥ 2/β (or z0(x) ≤ −2/β), is 1 (or 0), whereas V 1(x), where −2/β < z0(x) < 2/β, is
between (0, 1), as shown in Fig. 3(b). We reiterate that this V 1(x) is applied to the system to calculate
subsequent z1(x). Obviously, regions of V 1(x) where z0(x) ∈ 0, 1 are stable for the subsequent update,
and hence, the boundary condition that represents the stable regions is |z0(x)| ≥ 2/β. When we

(a) (b)
Fig. 3. Responses of 1-D network model with step input.
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assume αu 	 αv (e−αux � e−αvx for x > 0), we obtain the approximated boundary [xb in Fig. 3(b)]
as

xb ≈ α−1
v ln

β

4
. (12)

Since this process is repeated in the subsequent steps, the equilibrium spatial frequency [of V ∞(x)] is
given by (2xb)−1, which indicates that the spatial frequency is proportional to αv ∼ √

gvRv (diffusion
length of resistive material v) when Ru 	 Rv.

3. Simulation results
In the following simulations, instead of using αu and αv as diffusion length parameters, we use the
following diffusion coefficients:

Du =
gu

α2
u

, Dv =
gv

α2
v

. (13)

Figure 4 shows numerical results of the proposed 1-D model with an initial step input. Several
iterations are plotted (t = 0, 1, · · · , 5). In the simulations, the following parameter values were used:
Δx = 0.02, gu = gv = 1, β = 103, Du = 10−3, and Dv = 1, with Neumann boundaries. In this figure,
the plots of initial step input V 0(x) at t = 0, diffused and subtracted output z0(x) at t = 0, and

Fig. 4. Time evolution of 1-D network with step input.
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Fig. 5. Dependence of the frequency on diffusion coefficient Dv. The dashed-
line represents the theoretical values, and the (+) line represents the numerical
data.

Fig. 6. Dependence of diffusion coefficients on generated 1-D spatial patterns
with step input.

subsequent input V 1(x) [to calculate z1(x)] at t = 1 are exactly the same as plots in Fig. 3. When
input V 1(x) was applied, the system produced z1(x) at t = 1. This z1(x) was used to calculate the
subsequent input V 2(x) at t = 2. This operation was repeated until equilibrium. It should be noted
that regions of V 1(x) ∈ 0, 1 were stable (were not updated) in the subsequent update operations, as
explained before. Therefore the region boundary (x = 0 to xb) determines the wavelength (spatial
frequency).

Figure 5 shows the plotting of the spatial frequencies of the generated patterns obtained by numer-
ical simulations and theoretical results (f = (2xb)−1). The theoretical results agreed well with the
simulation results when Dv 	 0. To obtain the theoretical spatial frequency, we assumed αu 	 αv

(this corresponds to Du � Dv), as described above. In the simulation, Du was set at 10−3. Therefore,
as Dv → 0, differences between the numerical and theoretical results expands.

Figure 6 exhibits equilibrium pattern distributions of the model generated from the same initial
(step) inputs as in Fig. 5, with various values of Dv/Du and large x (x = [−16, 16], d = 1, Du = 10−3,
and Dv = [5×10−3, 100]). The black and white areas represent regions of u = 1 and u = 0, respectively.
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Fig. 7. Snapshots of striped patterns on 2-D model with random initial dis-
tribution.

As Dv/Dv increased, spatial frequencies of the generated patterns decreased, as expected.
We expanded the model to a 2-D system and performed numerical simulations. In the simula-

tions, we used the alternating direction implicit (ADI) method with Δx = Δy = 0.02 and Neumann
boundary conditions at the edge of the frame. The result is shown in Fig. 7 (Dv/Du = β = 10 and
x = y = [0, 9.6]). The initial state [V 0(x, y)] was randomly set within [0, 1]. Each snapshot represents
2-D distributions of V t(x, y) (V t = 0: black, V t = 1: white). The first eight snapshots were taken
after every 6 steps, and the final (equilibrium) shot was taken at step 300. The state of the patterns
was rapidly changed to a quasi-stable state in the first several tens of steps and then shifted to stable
state gradually. At the equilibrium, the space was filled with striped patterns that reflected the initial
spatial distribution.

Our previous model was known to generate 2-D striped and spotted patterns when offset values of
the sigmoidal response function had a nonzero value [10]. We here examine whether the same type
of patterns can be observed in the present model. To do this, we modify our dynamics of Eq. (9) as

V t+1(x) = Θ[zt(x) − c], (14)

where c represents the offset value. Physically, c represents a total balance of the diffused activator
(≡ u) and inhibitor chemicals (≡ v). When c > 0, v is predominant over u because the values of
u must be larger than those of v + c to ensure Θ(zt(x) − c) > 0.5, where zt(x) is proportional to
u − v at position x, and vice versa when c < 0. This can easily be confirmed from Fig. 8; the area
occupied by inhibitors (black areas) is equal to the area occupied by activators (white) when c = 0,
while inhibitors (black areas) become predominant as c increases or decreases (c = [−0.12, 0.12] and
V 0(x, y) was randomly set within [0, 1]).

Finally, we introduce a possible application for the proposed system. A reaction-diffusion-based
image restoring has been demonstrated in [10–12] where noisy images were restored without paying
much attention to noise cleaning, contrast enhancement, and statistical (intelligent) compensation of
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Fig. 8. Dependence of offset value in amplification on generated 2-D spatial
patterns with random initial distribution.

Fig. 9. Examples of the image restoration process using proposed 2-D system.

missing stripes and spots. Here, we try to demonstrate this type of image restoring on our system.
Figure 9 shows examples of image restoration using the proposed system. During the simulations, we
first created two types of reference images (striped and spotted references), as shown in Fig. 9(a) left
and (b) left. Spatial (peak) frequencies of the reference images were set at the same frequency as that
estimated by Eq. (12) for a given diffusion length of the system. Next, we broke the reference images
into four types by i) removing some localizations from the reference image, ii) adding scratch noises
on the reference, iii) adding Gaussian noises on the reference, and iv) removing some localizations
and adding Gaussian noises simultaneously, as shown in Fig. 9 [i–iv]. The broken striped images
were given to the system (c = 0) as the initial value [V 0(x, y)], whereas the broken spotted images
were given to the system (c = 0.1) as the initial value. As shown in pattern transitions in Fig. 9,
all the broken patterns were successfully repaired along with the surrounding global striped and
spotted patterns. Therefore, this system would be suitable for restoring almost-regularly-arranged
striped and spotted patterns such as fingerprints and polka-dot patterns. To confirm this in practical
environment, we employ a noisy fingerprint pattern as an input image. Figure 10(a) shows the results
[Dv/Du = 10−1/10−2, β = 10, x = y = [0, 13], Δx = Δy = 0.02 (650 × 650 pixels)]. The image
restoring process was the same as in Fig. 9(a) where noisy local stripes were restored by surrounding
global striped patterns. The system required around 100 updates until it reached equilibrium, to
restore the fingerprint patterns. Around the boundaries (top, bottom, left, and right boundaries)
of each snapshot, the generated (restored) pattern was distorted due to the Neumann boundary
conditions. The initial pattern (t = 0) was superimposed on the equilibrium pattern (t = 100), as
shown in Fig. 10(b). The black and red pixels represent the initial and equilibrium pixels, respectively.
From this figure, one may see that red stripes were invented based on the pixel placement of the initial
(black) pixels.

The image-restoring system shown in [10] had a Gaussian-shaped impulse response for diffusion
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Fig. 10. Examples of fingerprint image restoration.

where the variance was controlled by time (which we call “time-dependent” diffusion), whereas the
proposed system had a stiff impulse response given by (6) for instant diffusion, where the diffusion
length was controlled by the resistance (which we call “time-independent” diffusion). Hence, there
exists a qualitative difference of image-restoring performance between our previous system [10] and the
proposed system. The most significant difference is the number of update steps to reach equilibrium.
For example, our previous system required around 50 updates for fingerprint image restoration, but
each update required 80 (for activators) plus 80 (for inhibitors) sub-updates for diffusion, which
resulted in 8,000 updates to reach its equilibrium. On the other hand, thanks to the instant diffusion,
the proposed system required around 100 updates until it reached to the equilibrium [Fig. 10(a)],
which indicates that the proposed system is 80 times faster than our previous system, if the proposed
model was implemented by the same fabrication process in [10]. The other important difference is
the hardware scale. Our previous system required many local capacitors for computation of “time-
dependent” diffusion, and they mainly occupied the chip area. However, the proposed model was
intended to use two-layered resistive materials, hence the first and second layers of resistive poly-
silicon in standard CMOS LSI can be used for computation of “time-independent” diffusion, which
decrease the pixel area significantly. According to our brief estimation, the pixel area shown in [10]
could be reduced by 80%, if the proposed model was implemented by using the same fabrication
process. It would be more practical if the model was implemented on a chip with on-chip capacitive
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sensor array devices (e.g., [13, 14]).

4. Summary

We proposed a novel and simple reaction-diffusion (RD) model that can be developed using two-
layered resistive materials with nonlinear differential amplifiers. Nominal resistive materials were
employed to imitate the chemical diffusion of activators and inhibitors of the Turing system. Through
theoretical analyses, we proved that spatial frequencies of the generated patterns were proportional
to diffusion length of the resistive material. We then demonstrated that i) the model had the ability
to produce Turing-like spatial patterns and ii) the model was able to reconstruct a striped or spotted
image even if the initial (given) input image was damaged by external noises, scratches, and so on, by
extensive numerical simulations. The results showed that even an instant diffusion of activators and
inhibitors with amplification was able to account for the self-organizing striped and spotted patterns;
these results may be useful to explain reasons for the existence of such patterns in various systems, by
taking into account of the abstract (nominal-instant) diffusion of activator- and inhibitor-equivalent
chemicals and the (autocatalytic) amplification.
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