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Abstract: Hospedales et al. have recently proposed a neural network model of the “vestibulo-

ocular reflex” (VOR) in which a common input was given to multiple nonidentical spiking

neurons that were exposed to uncorrelated temporal noise, and the output was represented by

the sum of these neurons. Although the function of the VOR network is equivalent to pulse

density modulation, the neurons’ non-uniformity and temporal noises given to the neurons were

shown to improve the output spike’s fidelity to the analog input. In this paper, we propose a

CMOS analog circuit for implementing the VOR network that exploits the non-uniformity of

real MOS devices. Through extensive laboratory experiments using discrete MOS devices, we

show that the output’s fidelity to the input pulses is clearly improved by using multiple neuron

circuits, in which the non-uniformity is naturally embedded into the devices.

Key Words: vestibulo-ocular reflex, integrate-and-fire neuron, neural network, pulse density

modulation

1. Introduction
Charge-based ultra-low-power analog circuits may suffer from physical limitations in their temporal

responses because the present designing strategy is to decrease the power supply voltage or bias

currents [1]. Is there a possible way to construct an analog circuit that can perform high-speed

information processing with slow-but-low-power semiconductor devices? Neural networks are ideal

for such an implementation because high-speed parallel information processing can be performed

with slower neural elements as compared to present semiconductor devices. Recently, Hospedales et

al. reported that in a neural network model of “vestibulo-ocular reflex” (VOR), the non-uniformity

of neurons and the temporal noises applied to the neurons clearly improved the resulting output’s

fidelity to the analog input [2]. Figure 1 shows the proposed model. A common input is applied to N

spiking neurons that are exposed to uncorrelated temporal noise ξi (i = 1, 2, · · · , N), and the output

is represented by the sum of these neurons. When the neurons are identical and no noise is applied to

the network, the generated spikes are synchronous to each other. On the other hand, when temporal

noises is applied or when the neurons are non-identical, their spikes are no longer correlated. Note

that that the average inter-spike interval of the noisy network’s output is roughly N -times smaller

than that of the synchronous one. Therefore, the response (or firing) frequency of the noisy network is

always larger than that of the undisturbed network, resulting in a fidelity improvement at the input.
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Fig. 1. Neural network model of VOR.
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Fig. 2. i-th integrate-and-fire neuron circuit.

Inspired by these results, we propose a CMOS circuit for implementing a VOR network that ex-

ploits the non-uniformity of real MOS devices. Ideally, the responses of the VOR network circuit for

sinusoidal inputs would be evaluated, i.e., the D/A-converted values of the pulse modulated outputs of

the network would be calculated, and the outputs’ signal-to-noise ratio (SNR) at the input frequency

would be measured. However, in this paper, we instead show that an improvement in the output’s

fidelity can be achieved using multiple neuron circuits, whose non-uniformity is naturally embedded

into the devices. This is demonstrated through extensive laboratory experiments.

2. A CMOS circuit implementing a neural network model of VOR

Based on the VOR model proposed by Hospedales et al. [2], we developed a network circuit that

consisted of multiple MOS neuron circuits. In the network, we used integrate-and-fire neuron circuits.

Figure 2 shows a schematic of the neuron circuit. In Fig. 2, Vm,i and Vint,i represent the membrane

voltage and internal voltage of the i-th neuron, Vb the bias voltage, C the capacitance, Vdd,1 and

Vdd,2 the supply voltages. The value of C sets the maximal follow-up frequency of the single neuron

circuit. The circuit consists of a standard inverter (INV), an nMOS transconductance amplifier (OTA)

acting as a comparator, an input transistor m1, and a reset transistor m2. When Vin < Vdd,2, the

membrane voltage Vm,i is increased by charging C through transistor m1. Since the OTA has a
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Fig. 3. VOR network with three neuron circuits.

Fig. 4. Hysteresis of OTA (experimental results).

positive feedback loop (via node Vint,i), hysteresis exists between Vm,i and Vint,i (see [3] for details).

When Vm,i approaches Vdd,1, Vint,i approaches gnd. The output of the INV (Vout,i) goes to Vdd,2,

which results in shunting of Vm,i. Bacause of the hysteresis characteristics, shunting continues until

Vm,i reaches gnd. Vm,i is therefore reset to gnd with a time delay. During this delay period the output

voltage Vout,i is at Vdd,2, and outside of this period it remains at gnd. In other words, Vout,i is a

narrow pulse signal that represents neuron’s output spike exhibiting “integrate and fire” behaviors.

Figure 3 shows a schematic of a VOR network circuit consisting of three neuron circuits. A common

input (Vin) is applied to each neuron circuit. Since the neuron’s output is represented by a spike (a

logical “0” for the resting and refractory states, a logical “1” for firing state), the summed output

can be represented simply by the logical OR of each individual neuron’s output. It should be noted

that in real world experiments every neuron circuit possesses slightly different physical parameters.

Therefore, the non-uniformity in the original VOR model is naturally embedded into these circuits.

3. Experimental results

In the following experiments, we used discrete devices with C = 100 pF, Vdd,1 = 3.6 V, and Vdd,2

= 5.5 V. We used nMOS-FET (ALD1106) and pMOS-FET (ALD1107) for the OTA, m1, and m2

transistors, and a standard inverter (TC4069BP) for the INV. We used an HD4075BP for the three-

input OR gate. The delay through the OR gate is small as compared to the delay of our proposed
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(a) fin = 1 kHz.

(b) fin = 2 kHz.

Fig. 5. Responses of single neuron (experimental results).

circuit. The bias voltage Vb was set to 0.6 V to mimic operations in subthreshold CMOS circuits (the

threshold voltage of the nMOS-FET used in these experiments was actually 0.7 V). We will show that

even if the operating frequency of a single neuron is limited owing to its small bias voltage Vb, the

overall network can still operate at higher frequencies.

Figure 4 shows the hysteresis curves of the OTA of a single neuron circuit. When Vin (which is less

than Vdd,2) was applied, Vm,1increased and eventually approached Vdd,1, at which pointVint,1 sharply

decreased, as shown in Fig. 4. Vint,1 then fell below the threshold voltage of the INV as shown by

the dashed line in Fig. 4 and Vout,1 became Vdd,2. Vm,1 then decreased until Vint,1 rose above the

threshold voltage of the INV.

Figure 5 shows temporal responses of a single neuron circuit for two different input frequencies

(fin = 1 kHz and 2 kHz). Vin is a pulsed input and the offset, amplitude, and duty cycle ratio of the

input are 5.0 V, 0.5 V, and 95%, respectively. When fin was set to 1 kHz, as shown in Fig. 5(a),

the neuron circuit generated a spike after every input pulse, which indicated that the circuit was

sufficiently responsive. On the other hand, when fin was set to 2 kHz, as shown in Fig. 5(b), the

circuit only generated spikes on every second input pulse, thereby lowering the fidelity. To visualize

the relationship between the frequency of the input pulse (fin) and the generated spike (fout), we
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Fig. 6. Output vs. input frequency characteristics of single neuron circuit.

Fig. 7. Responses in noisy VOR network circuit.

plotted the fin vs. fout characteristics of a single neuron circuit in Fig. 6 (the “◦” symbols represent

the experimental raw data, and the dashed line was drawn based on bezier curve.) The estimated

output frequency fout indicates the total number of output spikes per second. The peak frequency of

Vout,1 was also calculated from FFT analysis and confirmed the 1 kHz upper limit.

The effect of noise (due to non-uniformity between neuron circuits) was then investigated using

our network. Figure 7 shows the temporal responses. In this experiment, we applied an input pulse

of fin = 5 kHz, as shown in Fig. 7(a), which was five times larger than the operational limit of any

single neuron circuit (1 kHz). Figure 7(b) shows each neuron’s firing event, where the symbols “+”,

“×”, and “∗” represent firings of neurons 1, 2, and 3, respectively. As shown, each neuron could not
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Fig. 8. Input-output frequency characteristics of single neuron circuit and
noisy VOR network circuit.

Fig. 9. Experimental probability of response in single neuron circuit and in
noisy VOR network circuit.

reliably respond to each input pulse. Figure 7(c) shows the summed output of these three neuron

circuits, as represented by the vertical lines. The number of spikes was increased by about three times

as compared to the firing of a single neuron, and the response rate to the input pulse was similarly

increased by about three times. This clearly shows the fidelity improvements obtained through the

innate non-uniformity of the network. Figure 8 plots the fin vs. fout characteristics of the network

circuit (“×”) as well as that of the single neuron circuit (“◦”). The peak frequency of Vout (the network

output) was calculated from FFT analysis and was found to closely corresponds to fin, although the

estimated output frequency fout saturated at 3 kHz. Figure 8 clearly shows that the network circuit

could respond to the input pulses at maximum fidelity when fin ≤ 3 kHz. From these results, we have

confirmed that the fidelity has been improved by three times and that the extent of the improvement

is proportional to the number of neurons in the network. The probability of a response at higher

frequencies was then calculated in order to evaluate its reliability. A probability of 1 means that the

circuit responds to each input pulse with 100% probability. Figure 9 shows the probability of response
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Table I. Summary of simulation condition.

Fig. 10. Simulated probability of response in noisy VOR network circuit.

for a single neuron and a noisy network. Note that the initial state of the circuit was randomly given

and the network was shown to be able to respond to the signal up to 3 kHz with 100% probability.

At higher frequencies, owing to natural heterogeneity in the system, neurons fired incoherently and

their probability of a response decreased.

By implementing N neurons in a network, one would expect a circuit whose maximum fout is N -

times faster than that of a single neuron circuit. However, fout is in fact limited by the output spike

width of a single neuron circuit, as explained hereafter. The output of the network is represented by

a simple summation. Assume that output spike width is Tw s and the maximum follow-up frequency

of a single neuron is 1 / Tp Hz. When the input frequency is larger than 1 / Tp Hz, a single neuron

cannot follow the input; however, a network consisting of many neurons can in fact follow it. When

input frequency is larger than 1 / Tw Hz, output spikes of any one neuron become overlapped with

those of other neurons. When large numbers of neurons are employed, all of their output spikes

overlap each other and therefore no output response is observed. In our experiments, we observed a

35 μs maximum spike width, giving a maximum fout of 28 MHz. This could be achieved by using

28 ×103 neurons in the circuit. Since constructing a network with thousands of neuron with discrete

devices is not practical, we instead performed circuit simulations with 100 neurons, which confirmed

that the maximum fout is 10 times higher than the maximum follow-up frequency of the single neuron.

Table I shows a summary of the simulation condition. Note that the device variation of the neuron

circuit accounted for the standard deviation of two separate transistors and assumed a Gaussian

distribution. The threshold voltages of m1 and m3 determine the value of Tp and Tw, respectively.
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The mean maximum follow-up frequency of a single neuron was 117 kHz, and the initial condition of

each neuron was chosen at random. Figure 10 shows the simulations results. The network circuit can

be seen to follow a 1MHz input signal with almost 100% probability when 100 neurons are employed.

We have demonstrated the fidelity of the VOR network using integrate-and-fire neuron circuits. In

the future, we will evaluate the response of the network to sinusoidal inputs, i.e., we will calculate

the D/A-converted values of the pulse modulated outputs of the network and obtain the SNR for

each input frequency. This will enable us to construct a useful pulse-density modulator based on our

noise-driven circuits.

4. Conclusion
We developed a noise-driven pulse density modulator having high fidelity to input signals based

on a neural network model of the vestibulo-ocular reflex (VOR). We constructed a network circuit

consisting of multiple CMOS neuron circuits and a standard OR logic circuit. Through extensive

laboratory experiments, we have shown that the fidelity to the input pulses was clearly improved

by the multiple neuron circuits, in which non-uniformity was embedded in the MOS devices. We

confirmed that a single neuron circuit could respond to input pulses of 1 kHz and that a network

consisting of three neuron circuits could respond to input pulses of up to 3 kHz which is three times

larger than the upper limit of the single neuron circuit.
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