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Abstract: In this paper, we demonstrate stochastic resonance (SR) in a double-well potential
system that can easily be implemented by a single operational amplifier. First, we propose a
bistable mathematical model that is suitable for analog hardware implementation. Then we
introduce an analog circuit for the model that is implemented by a single operational amplifier
only, and demonstrate that the circuit exhibits the same SR behavior demonstrated in tradi-
tional double-well potential systems, through extensive numerical simulations and experiments.
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1. Introduction
Stochastic resonance (SR) is a phenomenon where a system can stochastically detect a weak input
signal with the help of noise when the input signal is below the system’s threshold [1–3]. SR has been
observed in many systems such as static threshold systems [4–7], monostable dynamical systems [8,
9], and bistable dynamical systems (double-well potential systems) [10, 11]. Moreover, SR has been
demonstrated on electrical systems such as threshold circuits [12–15], bistable circuits [16–20], a
semiconductor laser [21–23], and so on. SR may be utilized for weak signal detection in electric
circuits [3, 6, 7], whereas SR in double-well electronic systems, i.e., bistable electronic systems, can be
used not only for weak signal detection, but also for logic memories.

Noise-driven logic memory circuits (SR memory circuits) would be valuable when the supply voltage
of the circuit is extremely low. Because electric power consumption of digital circuits is proportional
to the square of the supply voltage, decreasing the supply voltage is very effective to reduce power
consumption. However, decreasing the supply voltage causes data writing to fail or stored data to be
lost due to threshold deviation of MOS FETs. If the threshold deviation becomes the dominant factor,
SR would decrease memory cell’s failure rates. When threshold deviation disturbs data writing, noise
may stochastically decrease the potential barrier of double-well potential of a memory cell, and the
data writing would succeed. Noise sources exist everywhere. For instance, power supply noise in
LSIs [24] may be used as a noise source.

Memory cells must be designed with minimal size in many functional digital systems. The most
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widely used memory cell is a latch-based circuit composed of two inverters and transfer gates. In order
to construct an SR memory cell based on standard latch circuits, obtaining potential function of the
latch circuit is required to evaluate SR characteristics. However, obtaining the potential function
is not easy because i) ultralow supply voltage causes subthreshold operation of MOS FETs, and ii)
output of a subthreshold latch circuit is represented by an unsolvable (nested) inverse function of
sum of exponential functions. Hence, we propose a mathematical model whose potential function can
theoretically be obtained, and construct an electric circuit which is equivalent to the latch circuit.

2. The model
Let us start by introducing the following dynamics,

τ
du

dt
= −u + fβ(u − I), (1)

where u represents the state variable; fβ(·), the sigmoid function whose slope factor is β; τ , the time
constant; and I, the external input. Suppose that β is large enough, so u → 1 when u > I, wheareas
u → 0 when u < I. Thus one can be convinced that this system is a bistable system (u → 0 or 1).

Next, potential function of this system H will be given. When the following condition,

∂H

∂t
=

du

dt
· ∂H

∂u
< 0, (2)

is satisfied, the system is considered to be stable. One can easily notice that

∂H

∂u
= −τ

du

dt
, where τ > 0, (3)

is a candidate that satisfies the condition. By substituting Eq. (1) to the equation above, we obtain

∂H

∂u
= u − fβ(u − I). (4)

Integrating this by u leads to the following potential function,

H =
1
2
u2 − 1

β
ln

(
exp(βu) + exp(βI)

)
+ C, (5)

where C represents the integral constant.

Fig. 1. Shape of potential function of proposed double-well system for differ-
ent magnitudes of input I. Steady state [(a) and (c)] and possible noise-driven
state transition [(b) and (d)] are depicted.
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Figure 1 plots the obtained double-well potential function (β = 20 and C = 0) for several values of
I. In the following, let us assume that i) the model accepts a periodic input, e.g., I = 0.5+A0 sin(ωt)+
n(t), where A0 is the amplitude; ω, the angular frequency; t, the time; and n(t), the Gaussian white
noise, and ii) A0 = 0.3 and n(t) = 0 for the time being. Figure 1(a) plots an initial shape of H for
I|t=0 = 0.5. When we assume u|t=0 = 1, this state (u = 1) is stable because it is trapped in the
right well, as shown in Fig. 1(a). As time increases (I increases), the left well goes down. Figure 1(b)
illustrates the lowermost case for ωt = π/2 (I = 0.8). Since the middle potential barrier disappears
when I = 1, state transition (u = 1 → 0) does not occur in this example. Figure 1(c) illustrates the
shape of H for the subsequent state (ωt = π, I = 0.5). As time further increases, the right well goes
down. Figure 1(d) illustrates the lowermost case for ωt = 3π/2 (I = 0.2) where state transition does
not occur as well because the middle potential barrier disappears when I = 0.

Consequently, when n(t) = 0, state transition does not occur if a subthreshold input (A0 < 0.5;
0 < I < 1) is given to the system. However, a “stochastic transition” may be caused by subthreshold
inputs with nonzero n(t). Small amounts of noise cannot cause the transition, whereas excessive
amounts of noise may cause random transition. Therefore, one may expect that there exist optimal
strength of noise that maximizes the SNR of state transition [1].

3. Circuit implementation of proposed bistable system
The double-well potential system proposed in the previous section was implemented in electric circuits
with one operational amplifier only. A general operational amplifier accepts two voltage inputs (V+

and V−, for example) and it amplifies the voltage difference between V+ and V− with gain Av. The
output Av · (V+ − V−) is clamped at supply voltages (Vdd, Vss). Thus, when the gain is large enough
and Vss = 0, the amplifier’s output is approximated by Vdd ·θ(V+−V−), where θ(·) is the step function.

Suppose the time constant τ in Eq. (1) is small enough, then we obtain u ≈ fβ(u− I) from Eq. (1).
When β is large enough, we can say fβ(·) ≈ θ(·). When we consider Vout as u · Vdd and Vin as I · Vdd,
we obtain the approximate equation; Vout ≈ Vdd ·θ(Vout−Vin). The right side of the equation is equal
to the estimated output voltage of the amplifier where “V+” node is connected to Vout and “V−” node
is connected to Vin. Thus, by connecting the output node of the amplifier and “V+” node, the system
for Eq. (1) is implemented in electric circuits. Note that the circuit is extremely simple as compared
with double-well potential electronic systems proposed in [16–20].

4. Results
4.1 Numerical simulation results
Numerical simulations of the proposed model given by Eq. (1) were carried out by using the following
parameters; τ = 10−3, β = 20, I = 0.5 + A0 · sin (2πf0t) + n(t), where A0 = 0.2, f0 = 1 Hz, and

Fig. 2. Numerical simulation results exhibiting SR in proposed system.
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Fig. 3. Circuit setups (a) and shape of simulated potential curve of proposed
circuit (b).

Fig. 4. Simulated transient responses of proposed circuit for subthreshold
inputs with noise.

n(t) is the Gaussian white noise (filtered at 100 Hz) with standard deviation σ. Figure 2 shows time
courses of u and I for σ = 0.06, 0.15, and 0.22. When σ = 0.06, the rate of transition was low because
the probability of disappearance of the potential barrier was low, as well [Fig. 2(a)]. As shown in
Fig. 2(b), when σ was increased (= 0.15), state transition occurred in response to the increase and
decrease of the sinusoidal input; i.e., state transition of u → 0 and u → 1 occurred when I was high
and low, respectively. For larger σ, random transition of u was observed because the sinusoidal input
was buried in noises [Fig. 2(c); σ = 0.22]. Figure 2(d) plots σ versus signal-to-noise ratio (SNR)
(≡ 10 log10 S(f0)/B(f0) where S(f0) and B(f0) represent the signal and background level at f0 in the
power spectra of u), with several values of β. When β = 20, the peak SNR was 10.5 dB at σ = 0.2.
For larger β (50 and 500), the peak SNR was decreased because large β elevate the potential barrier,
which result in blocking noise-driven state transition in response to the subthreshold input.

4.2 SPICE simulation results
Figure 3(a) illustrates the simulation setups. In the following simulations, we used a standard 0.18-μm
CMOS parameter set (minimum W/L of transistors for analog simulations) with Vdd = 1.8 V and
Vbias = 0 V. Figure 3(b) shows potential curves of the proposed circuit (Voffset = 0.3 V). The potential
curves were obtained by integrating simulated transient data (dVout/dt) by Vout with four different
initial conditions; i.e., Vout|t=0 < 0, Vout|t=0 = Vdd/2 − ΔV (ΔV � 1), Vout|t=0 = Vdd/2 + ΔV , and
Vout|t=0 > Vdd.

Figure 4 shows transient simulation results of the proposed circuit. In the simulations, we used
Vin = Vn + Vsin where Vn is the Gaussian white noise (filtered at 100 Hz) with standard deviation
σ, and Vsin = Vdd/2 + A0 sin(2πft) (A0 = 0.6 V; f = 1 Hz). The Gaussian noise sequence was
externally generated and was included in the SPICE codes as a PWL voltage source. Figures 4(a),
(b), and (c) represent the inputs (Vin) and outputs (Vout) of the system with σ = 0.1, 0.3, and 0.5
V, respectively. The results were qualitatively equivalent to numerical simulation results shown in
Figs. 2(a) to (c); i.e., i) small σ could not induce stochastic transition sufficiently, ii) moderate σ

induced state transition in response to the input, and iii) large σ caused random state transition.
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Fig. 5. Electric circuit having using Double-well potential using single oper-
ational amplifier.

Hence, one may observe SR behaviors with the proposed circuit consisting of “single” operational
amplifier.

4.3 Experimental results
Figure 5 shows our experimental configuration. A CMOS full-swing (Rail-To-Rail) operational am-
plifier (National Semiconductor, LMC6482) was used and supply voltage Vdd was set to 3 V. A input
signal applied to the amplifier was Vin = Vsin + Vn, where Vsin the sinusoidal input and Vn the noise
voltage. Vin was generated by a resistive voltage divider (R = 1 kΩ)1. Vin was applied to “–” node
of the operational amplifier(an input node of the proposed circuit). Furthermore, Vsin was given by
Voffset + V0 · sin (2πf0t), where Voffset was 1.5 V, V0 was 1 V, and f0 was 200 Hz. Vn was the time
varying Gaussian noise voltage whose average and standard deviation were 0 V and σ V. Both Vsin

and Vn were given by a waveform generator (HIOKI, 7075). Pseudo-random sequences were generated
by using the Box-Muller method from a computer simulation. Vn was the Pseudo-random sequence
that was imported to the waveform generator with frequency limitation of 19 kHz. We observed
waveforms of the input and output voltages (Vin and Vout) by an oscilloscope (Techtronix, TDS784D)
and sampling rate was 100 kHz . We also observed power spectrum of the output voltage (Vout) by a
FFT module, which is equipped with the oscilloscope (averaged over 1000 times in frequency domain),
and obtained SNR by subtracting the background noise level on f0 from the signal level on f0.

Figure 6 shows experimental results (waveform screens of the oscilloscope) where σ was set to 0.3
V, 0.75 V, and 1.5 V. Each figure, (a), (b), and (c), contains time courses of Vin (upper), time courses
of Vout (middle), and power spectrum of Vout (lower). When σ = 0.3 V, probability of Vout transition
was small [Fig. 6(a)]. Because the offset and amplitude of Vsin were 1.5 V and 2 Vpp (Vsin = 0.5–2.5
V), the minimal voltage of Vn for transitions from ‘1’ to ‘0’ and from ‘0’ to ‘1’ are +0.5 V (when Vsin

is 2.5 V) and −0.5 V (when Vsin is 0.5 V), respectively. This indicates that when σ were 0.3 V, a
possibility of Vn > 0.5V (or Vn < −0.5 V) and the transition possibility were small [Fig. 6(a)]. We
measured signal and background level at 200 Hz in power spectrum and found that SNR was 6.4 dB.
When σ = 0.75 V, possibility of Vn > 0.5V (or Vn < −0.5V) was higher than the transition possibility
of σ = 0.3 V, and transition possibility was also higher [Fig. 6(b)]. The SNR in this case was 21.5
dB. The important fact is that the possibility of the transition from 0 to Vdd became high when Vsin

is low, and the possibility of the transition from Vdd to 0 became high when Vsin was high. In other

1Upon the experiments (with large σ), one should pay attention to voltage amplitudes of the amplifier’s inputs; i.e., R
should significantly be larger than “on” resistance (Ron) of electrostatic discharge (ESD) diodes (for MOS gate protection)
in the CMOS operational amplifier (LMC6482). When the amplifier’s input “V+” (or “V−”) exceeds Vdd (or falls below
Vss), the diodes are forwardly biased, which results in large (shunting) currents on the ESD paths. To avoid this, we
employed a resistive voltage divider, as shown in Fig. 5. As long as 2Ron/R ≈ 0 (R � Ron), Vin does not exceed Vdd (or
does not fall below 0) significantly, when Vn +Vsin exceeds Vdd (or falls below 0). Namely, the excess voltage drops across
R.
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Fig. 6. Experimental results of proposed circuit. (a)–(c) time courses of
input Vin (top waveform), output Vout (middle), and power spectrum of Vout

(bottom) for σ = 0.3 V, 0.75 V, and 1.5 V; (d) SR curve (SNR versus σ) of
proposed circuit.

words, although Vsin didn’t have the amplitude required for the transition, the noise stochastically
helped the transition of Vout to Vdd (or 0) depending on Vsin. The experimental results in σ = 1.5
V are shown in Fig. 6(c). In this case, the SNR was 18.7 dB. The SNR didn’t decrease suddenly as
it seems, but the frequent transition of Vout occurred. This is because the noise level almost always
surpassed the signal level required for transition. Figure 6(d) shows the experimental SNR curve that
was obtained by varying standard deviation of noise σ from 0 to 4 V. The maximum SNR was 21.5
dB (σ = 0.75 V).

5. Discussion
As described in Section 1, SR in bistable system could be utilized in logic memory systems. In this
paper, to obtain a theoretical potential function, we designed a bistable circuit with an operational
amplifier. However, the amplifier requires constant bias currents, which results in dissipating power
even in the steady state. Hence, one should use standard (inverter-based) latch circuit that does not
dissipate power in the steady state, if one aims at practical applications of SR in low-power memory
systems.

Let us suppose that the power-supply voltage of a standard latch circuit is extremely decreased,
aiming at the ultra-low power operation. One may easily find that there exists the lower limit for
correct memory operations (writing and storing operations) due to the transistor’s mismatch. What
happens if we use multiple (but unstable due to the mismatch) latch circuits driven by noise, and
do majority voting among N latch circuits to represent 1 bit data? SR helps to improve incorrect
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writing and storing operations stochastically. Power dissipation of the larch array would be N times
larger than that of a single latch (the power is linearly increased as N increases), whereas power of
digital circuits is proportional to the square of the power-supply voltage. Hence, we conclude that i)
SR improves bit-error rate of an array of latch circuits with extremely low-power-supply voltage as N

increases, ii) the power dissipation is determined by the required (capable) bit-error rate, and iii) if
a certain degree of error is accepted, an SR-based memory system may drastically decrease the total
power dissipation.

6. Summary

To observe stochastic resonance (SR) in an electronic bistable system, we proposed a double-well
potential system that can easily be implemented by a single operational amplifier. We first obtained
a potential function of the system and its bistable conditions. Then, we constructed a simple electric
circuit based on the system. The circuit is extremely simple as compared with double-well potential
electronic systems proposed in [16–20]. We conducted numerical and SPICE simulations as well as
experiments of the circuit. We confirmed the same SR behavior observed in conventional double-well
potential systems [1].
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