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Abstract: The implementation of a reaction-diffusion (RD) cellular automata (CA) model on
an FPGA is presented. The model generates Turing-like patterns, e.g., striped and spotted
patterns observed in marking patterns over animal skins, human fingerprints, etc. Moreover,
this model has simple dynamics and generates striped or spotted patterns at its equilibrium
that is reached within few cycles, which implies that the model is suitable for hardware imple-
mentation. To this aim, a digital processor architecture based on the RDCA model is proposed.
Finally, the self-organized patterns generated on the FPGA by the implemented processor are
presented.
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1. Introduction
Self-organized spotted or striped patterns appear in nature, e.g., the surfaces of animals and fish,
fingerprints, in colonies of bacteria and other systems [1–6]. Alan Turing advocated the concept of
“diffusion-driven instability” [7] regarding these patterns and their forming processes. This concept
indicates that transitions are developed from homogeneous states to spatially inhomogeneous stable
states in these systems. The time development of states is described by a sum of reaction and diffusion
terms in a system. Reaction represents the production or execution of the state in a local area by
summing activators and inhibitors. Diffusion represents a transport process that tends to inhibit any
inhomogeneity in the neighboring region. RD equations which are described as partial differential
equations exhibit striped or spotted patterns at the equilibrium state.

Various approaches which exploit RD dynamics while reducing nonlinearity to limit computational
resources have been investigated. As examples, discretized RD space with cellular automata, dis-
cretized parameters and values of dynamics, or both have been presented [8–15]. In this paper, a
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RDCA model [16] which has time-dependent diffusion dynamics and discretized reaction dynamics
has been used, which has simple dynamics and is suitable for HW implementation. Moreover, we
propose a digital processor architecture which generates striped or spotted patterns. Subsequently,
we demonstrate that the processor implemented on an FPGA generates self-organized patterns.

This paper is organized as follows. Section 2 describes the RDCA model. Section 3 explains the
architecture of the digital RD processor based on the RDCA model. FPGA implementation results
are presented in Sect. 4. Section 5 is devoted to the summary and discussion of an application example
using the RDCA model.

2. A reaction-diffusion cellular automata model
In the RDCA model, each state of a cell is determined by a sigmoid function and a weighted-sum com-
putation that takes interaction with four adjacent cells into account. The weighted-sum computation
implies that activators and inhibitors diffuse in individual diffusion fields, and they are convoluted in
each of the cells. Each state in the cells is computed as the difference between the states of activators,
u, and inhibitors, v, for each cell (x, y) in the field. For the digital HW implementation, the diffusion
dynamics is discretized as

uij(t + Δt) − uij(t)
Δt

= Du
ui+1j(t) + ui−1j(t) + uij−1(t) + uij+1(t) − 4uij(t)

h2
, (1)

vij(t + Δt) − vij(t)
Δt

= Dv
vi+1j(t) + vi−1j(t) + vij−1(t) + vij+1(t) − 4vij(t)

h2
, (2)

Fig. 1. Process of generating a wave in a one-dimensional RD model: (a)
initial conditions (step function), (b) after diffusion for Δt0, (c) after diffusion
for Δt1 - Δt0, (d) subtraction of the activator from the inhibitor, and (e) the
subtraction in (d) that is amplified by the sigmoid function.
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where i and j represent the coordinate of the x axis and the y axis on the square diffusion grid,
respectively, h represents the increase of x or y, Du represents the diffusion coefficient of the activators
and Dv represents the diffusion coefficient of the inhibitors. Dv and Du are selected to satisfy that Dv

is larger than Du. The diffusion equations for u and v are integrated for a time δt. A cell’s subsequent
state is determined by the value of the sigmoid function of u− v. The reaction dynamics is described
as

u(x, y, δt(n + 1)) = v(x, y, δt(n + 1))

= f(u(x, y, δt · n) − v(x, y, δt · n) − c), (3)

f(w) =
1

1 + e−βw
, (4)

where n represents the time step, β represents the measure of steepness of the function, and c repre-
sents an offset value.

Figure 1 shows the process of forming a spatiotemporal wave pattern in one-dimensional RD in a
diffusion field considering D = 0.001, Dv/Du = 3.0, h = 0.01, Δt = 0.01, β = 20 and c = 0. In
this paper, the diffusion coefficient D represents the diffusion coefficient Du of activators. Figure 1(a)
shows an initial condition as a step function. Solutions in RD models have a form D ·t which indicates
that diffusion and time are commutable. Therefore, we can assume Dv/Du ≡ Δt0/Δt1. To impose
Dv/Du = 3.0, we set Δt0 = 15 and Δt1 = 45. After diffusion for Δt0, the lightly blurred initial step
function is temporarily stored, in Fig. 1(b). This stored step function corresponds to the initial step
function diffusion with a factor Du for Δt0. Then, the stored step function is further diffused for
Δt1 − Δt0. At time Δt1, the initial step function has been numerically diffused using coefficient Du

for Δt1 yielding a strongly blurred step function, which corresponds to the initial step function after
a diffusion with Dv for Δt0 in the mathematical model. As a consequence, the initial step function is
blurred for Δt0 with different diffusion coefficients Dv and Du in a diffusion field. Figure 1(d) shows
the difference of Figs. 1(b) and 1(c), that corresponds to the difference of activators and inhibitors.
Finally, this difference is amplified by the sigmoid function in Fig. 1(e). “One update” is defined as
the application of the resulting amplified output waveform as input of a new processing.

3. Architectures of a digital RD processor

3.1 One-dimensional RD processor architecture
The architecture of a digital RD processor that is suitable to FPGA implementation of the RDCA
model is presented in the following. A one-dimensional RD processor architecture if first presented
in Fig. 2, which handles 8 bit value and 120 addresses. As indicated in Figs. 1(b) and 1(c), an input
signal is diffused by different diffusion coefficients. Therefore, two blurring filters which have different
step functions are implemented in the processor. After double filtering, the blurred input signals and
offset value c are subtracted. Finally, the amplified result updates the main memory value. Wave
patterns are generated from repeated updates.

The nearest-neighbor kernel shown in Fig. 3(a) is used and expanded to develop the blurring filters.
Expanding the kernel range enables emulating a stronger intensity of the diffusion coefficient. The
outputs out0 in kernel 1 and 2 are respectively given by

kernel1 out0 = (a−2 + 4a−1 + 6a0 + 4a1 + a2)/16 (5)
kernel2 out0 = (a−4 + 5a−3 + 11a−2 + 15a−1 + 16a0

+15a1 + 11a2 + 5a3 + a4)/80, (6)

where a represents a cell such that a0 is centered within the filter kernel. These equations correspond to
Eqs. (1) and (2) which explain the diffusion dynamics of activators (u) and inhibitors (v), respectively.
Figure 4 shows the architecture of the filter module that uses filter kernels 1 and 2. The values
originating from cells which are read from the main memory are shifted right, and stored into registers
(Z−1), one by one and obey a clock sequence. The input signal is blurred by filters with kernel 1 or 2
which share some registers in order to save area. Because the blurring filters need different numbers
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Fig. 2. Architecture of the one-dimensional RD processor.

Fig. 3. One-dimensional kernel of the blurring filter: (a) nearest neigh-
bor kernel, (b) second-neighbor kernel, and (c) fourth-neighbor kernel.

Fig. 4. Data stream architecture of the blurring filter in the one-
dimensional RD processor.

of delay cells, the final subtraction process needs timing adjustment registers for kernel 1. Then, these
outputs of the filters are subtracted. This subtraction process corresponds to the reaction dynamics
(Eq. (3)) without amplification by a sigmoid function and subtraction of an offset variable c which
is set to 0. Subsequently, the subtracted signal is amplified by a LUT operation, which functionally
performs the sigmoid operation in (Eqs. (3) and (4)). Finally, the amplified signal is stored into
the main memory. Hence, the proposed architecture has almost an identical number of controllable
parameters as the RDCA model, and only differs from the precision of calculations, i.e., the RDCA
model treats floating-point numbers and the FPGA implementation treats fixed-point numbers.

Figure 5 shows the subtraction timings, where the output of kernel 1 is delayed by two clock cycles.
Bus input represents streaming data which is read from a main memory at each falling edge of clock
CLK. The kernel 1 valid signal defines the timing of the valid output data from the filter kernel 1.
When kernel 1 valid signal is low, data streaming out of kernel 1 is invalid. As shown in Figs. 3(b) and
3(c), the center cell of kernels 1 and 2 are shifted in a proportion that corresponds to two clock cycles,
in hardware. Therefore, the delayed output of kernel 1 bus has its timing adjusted for subtraction
from the output bus of kernel 2. The kernel 2 valid signal defines the timing of the valid output data
from the filter kernel 2. The outputs of kernel 1 and 2 are subtracted when the output of kernel 2 is
valid. Subsequently, the filter module valid signal rises. Finally, the output of filter module bus carries
data from the blurring filter.
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Fig. 5. Timing chart of the blurring filters in the one-dimensional RD
processor.

Fig. 6. Kernels of two dimensional blurring filter: (a) nearest neighbor ker-
nel, (b) one-dimensional blurring filter kernel in x direction, and (c) one-
dimensional blurring filter kernel in y direction.

Fig. 7. Architecture of the two-dimensional RD processor.

3.2 Two-dimensional RD processor architecture
The architecture of a two-dimensional RD processor which is an expanded version from the one-
dimensional RD processor is presented in the following. Figure 6(a) shows a two-dimensional blurring
filter kernel which involves four nearest-neighbor cells. The two-dimensional kernel is implemented in
the form of two one-dimensional kernels which handle the blurring process into the x and y directions,
respectively, as shown in Figs. 6(b) and 6(c). This technique allows to apply the abovementioned one-
dimensional RD processor to the x and y kernels. In order to generate a blurred 2D image, the results
from blurring filters into x and y directions are added.

Figure 7 shows the architecture of a two-dimensional RD processor. Using a true dual-port SRAM
enables simultaneous reading of two values from different memory addresses. To blur an image data,
two one-dimensional blurring filters are required, which are connected to the SRAM outputs and
handle the x and y directions. Subsequently, the filtered results are stored into temporary memories
to adjust the timing of the 2D blurred image generation process. The sum of values in these temporary
memories are stored into the main memory as one update, as shown in Fig. 7. By repeating updates,
2D striped patterns are formed.
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Fig. 8. First stage of the RD process: Read operation, filter processing and
writing data into the temporary memories x and y in parallel.

Fig. 9. Second stage of the RD process: Adding x to y, amplifying by LUT,
and writing data into the main memory.

Fig. 10. Timing chart of the 2D RD processor.

The architecture implements two operational steps. First, two values are simultaneously read from
the main memory. After blurring and amplifying these values, the filtered results are stored into their
temporary memories, respectively, as shown in Fig. 8. In order to read the memory in the x direction,
a row address counter is incremented. On the other hand, to read the memory in the y direction, a
column address counter is increased by N which is determined as the width of an image, in pixels.
When the memory address reaches the bottom of a column, its address changes to the top of the next
column. These read operations are repeated until reading the final pixel.

Second, values are read from each temporary memories (x and y) in the x direction by using the
same address counter which increments addresses, as shown in Fig. 9. After adding these values, the
results are stored into the main memory. A finite-state machine controls the address counters that
generate the read and write memory addresses, and the read and write enable signal governing the
memories operations.

Figure 10 shows the timing chart pertaining to one update, which consists of a parallel blurring
process and summation of blurred data on the 2D RD processor. The blurring process signal starts
the blur filtering process and the update signal triggers the addition of blurred data in x axis and y
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axis. The Data out main memory signal represents streaming data which consists of a 45× 45 pixels
image initially stored in the two-port SRAM. The image size is supported by the internal FPGA
memory capacity. Fixed boundary operation conditions are set. Data in memory x and Data in
memory y signals identify the blurred data streams that are stored into x and y memories. When
the last (2025th) pixel is stored into these memories, the blur filtering completes as shown in Fig. 8.
Subsequently, the adding process starts as shown in Fig. 9. The Data in main memory is a data
stream which is formed by summation of corresponding pixels in memory x and y. One update
process is completed when the data is entirely stored into the main memory.

4. Implementation of the RD CA processor

We implemented the RDCA processor on an Altera Cyclone IV platform operating at a frequency
of 5 MHz. A one-dimensional RD processor based on the above mentioned architecture has first
been implemented. Table I shows the specification of the 1D RD processor. In the main memory,
unsigned 8 bit values are stored in each cells. Signed 8 bit values are generated at the output of the
filter. The signed 8 bit values are amplified and shifted into positive values (unsigned 8 bit values)
in the amplification module. Figure 11 shows temporal evolution results of the RD process, which
generates waves from a step function input. The x axis represents the memory address, and the y

axis represents the update number. The wave pattern in the first update corresponds to the wave
pattern in Fig. 1(e). By repeating updates, wave patterns spread from the center cell.

Subsequently, a two-dimensional RD processor has been implemented. Table I shows the specifica-

Table I. 1D RD processor specs.

Number of cells: 128
Depth: signed 8 bit

Total logic elements: 1,275
Total combinational functions: 1,044

Dedicated logic registers: 593
Total registers: 593

Total memory bits: 1,024

Fig. 11. FPGA implementation results using the one-dimensional RD pro-
cessor.

Table II. 2D RD processor specs.

Number of cells: 2025
Depth: signed 8 bit

Total logic elements: 2,493
Total combinational functions: 2,205

Dedicated logic registers: 894
Total registers: 894

Total memory bits: 49,152
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Fig. 12. FPGA implementation results of a two-dimensional RD processor:
(a) initial condition (impulse input), (b) first update, (c) second update, and
(d) 3D representation of the second update.

Fig. 13. FPGA implementation results of a two-dimensional RD processor:
(a) initial condition (step input), (b) first update, (c) second update, and (d)
stable state.

Fig. 14. FPGA implementation results of a two-dimensional RD processor:
(a) initial condition (triangular input), (b) first update, (c) second update, (d)
third update, and (e) stable state.

tion of the 2D RD processor. To blur an image in parallel, the 2D RD processor requires two filters
and amplification units. Therefore, the total amount of logic elements, and combinational functions
are approximately doubled with respect to the 1D RD processor resources. In addition to the main
memory, two temporary memories are required, that are used to adjust summation timings. Fig-
ures 12(a)–(c) show results which are obtained from an impulse input located in the center of the
image. Figure 12(d) shows the 3D result in the second update. The pixel values are represented by
the intensity (contrasting density) in the z axis direction. First, an impulse is applied to the center as
an initial input. Because the amplifier has steep slope to generate RD patterns in a small area, dotted
patterns are formed by updating several times. Therefore, from an impulse input, striped patterns
will be observed in a RD processor which has extended RD space and a smooth slope amplifier mod-
ule. Figure 13 shows the results which are obtained from a step function input (Fig. 13(a)). Though
the initial input covers all memory addresses, values corresponding to one half of 8 bit are invalid
and treated as such after the first update. By repeatedly updating, a wave pattern expands into the
right and left directions as shown in Figs. 13(b)–(d). Figure 14 shows the results which are obtained
from a triangle step function input. By updating several times, a wave pattern expands to diagonal
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Fig. 15. FPGA implementation results of a two-dimensional RD processor:
(a) initial condition (random input), (b) first update, (c) second update, (d)
third update, and (e) stable state.

Fig. 16. Comparison of RD results. The first column presents the initial
inputs; the second column presents the results obtained from the RDCA model
computer simulation; the third column presents the results obtained from the
proposed model operated on FPGA; the fourth column presents the mean
squared error (MSE) calculated between the RDCA model (second column)
and the proposed model (third column).

directions as shown in Figs. 14(b)–(d). After the fifth update, the wave pattern stabilizes into a state
as shown in Fig. 14(e). Figure 15 shows the results which are obtained from a random input. By
updating several times, a random wave pattern is gradually formed as shown in Figs. 15(b)–(d). After
the fifth update, a wave pattern stabilizes into a state as shown in Fig. 15(e). The formation of wave
patterns by the implemented RDCA processor is confirmed from these experiments.

Figure 16 shows a comparison of RD final results (Figs. 13 and 14), operating the RDCA formal
model (second column) and the proposed hardware architecture from two identical initial conditions.
The mean squared error (MSE) metrics is adopted to compare the results in a quantified manner and
is presented in the fourth column. The MSE is defined as

MSE =
1
n

n∑

i=1

(Ŷi − Yi)2, (7)

where n represents the number of pixels in each image, Ŷ represents the estimated image and Y

represents the ground truth image. 8bit values within valid 27× 27 pixel sub-windows are considered
in the calculation (a full-window size is 45×45 pixels). Hence, the maximal MSE value equals 65,025.
As observed from null MSE values in the first and second rows, identical RD patterns are generated
by the RDCA model and the RD processor.

Figure 17 shows a comparison of RD trials towards reaching stable state, and operating the RDCA
formal model as well as the proposed hardware architecture from two identical initial condition pat-
terns consisting of random noise (Fig. 15). The RDCA simulation results (Fig. 17(a)–(e)) and the
FPGA measured results (Fig. 17(f)–(j)) are presented as a function of the number of RD updates.
After the first update, the MSE is observed at 27,942. By repeating RD updates, the MSE increases.
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Fig. 17. Comparison of RD results. The horizontal axis corresponds to num-
ber of RD updates and the vertical axis corresponds to the MSE computed con-
fronting the RDCA model simulation (a)–(e) and the FPGA implementation
results (f)–(j). The line that joins the discrete calculated points is depicted to
improve the graphical interpretation and has no physical meaning.

Increasing from the fourth update, the MSE is observed at 29,882 which corresponds to an approxi-
mate 46% of the maximal theoretical MSE value of 65,025. This difference arises from a discrepancy
in the number representation and calculation between the computer simulation (32bit) with respect
to the proposed model implemented on FPGA (8bit). Moreover, errors originate from the floating
point representation and calculation used in computer simulations that contrasts to the fixed point
calculation used on the FPGA; these errors are further expanded by the sigmoid function. Conse-
quently, significant errors (e.g., (255−0)2 or (0−255)2) in the sigma term in Eq. (7) may occur when
striped patterns slightly shift from their high-resolution geometrical expected location. Nevertheless,
the nature of the pattern as well as its general and local shapes are preserved.

5. Summary
The hardware architecture of a Reaction-diffusion processor which uses an RDCA model is presented
and has been implemented on an FPGA. The RDCA model which is considered in this paper has
simple dynamics and reaches an equilibrium of striped pattern within few updates. The model had
earlier been implemented in analog CMOS to repair fingerprint images, and has been confirmed
suitable for hardware-based applications. A novel steganography method based on Reaction-diffusion
had been earlier shown an efficient application using the reaction-diffusion phenomenon [17]. In RD
steganography, the RD process is applied to improve data security after hiding a plain text within a
random-dot image. The 2D RD processor presented in this paper is suitable to support the realization
of RD-based steganography. Furthermore, this hardware can process large images much faster than
software processing, thereby opening the way to real-time usage of 2D RD applications.
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