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Abstract: Stochastic resonance (SR) is a phenomenon in which dynamic noise is effectively
used to drive a system with subthreshold input signals. In the classical model of SR induced in
a network, each constituting unit must be delivered noise from independent external sources.
Recently, a new model of SR has been proposed, where internal noise is exploited as the solution
to avoid the burden of generating independent external noise for each unit. In this study, we
employ a network of FitzHugh-Nagumo neurons as a candidate of the new model of SR system
using internal noise. The network is formed as a circular system where all connections between
neurons strictly consist of self-connections or connections propagating into a unique direction.
Hence, each neuron receives stimuli from its four predecessors within the circular arrangement,
from its own output, as well as from a unique input node. An input signal of an amplitude
that is smaller than the threshold of individual neurons is provided to the network. Owing to
a process of SR that occurs within the network and that is sustained by internally generated
noise, the subthreshold signal is detected and amplified and delivered to the network output
node. The frequency characteristics of the network in terms of its operational bandwidth is
established.
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1. Introduction
Noise is present in all natural phenomena, and influences or perturbs them depending on its nature
and intensity. Some biological systems have been observed to process information based on external or
thermal noise, e.g., [1, 2]. Engineered systems and specifically sensory systems, information storage,
processing and transmission systems and microelectronic systems also suffer from the presence of
various types of noise that limit their performances in terms of resolution, bandwidth, access time,
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Fig. 1. Collins summing network topology [11].

for example. Noise has traditionally been considered an adverse phenomena that should be cancelled
using complex fabrication technology, circuit and systems, or signal processing techniques, e.g., [3, 4].
The concept of taking benefit of the inherent existence of noise rather than investing much energy to
combat it has recently been devoted increasing attention, particularly from the circuit and systems
research communities, [5–9]. Improving the randomness of on-chip generated binary sequences used
in various applications such as cryptography, local perturbation-based gradient descent algorithms
that process optimization learning in artificial neural networks and can extract themselves out of a
local minima of the energy function that must be minimized are such examples, e.g., [10]. Stochastic
resonance (SR) has been identified as a phenomena in which a signal with subthreshold amplitude
may be effectively detected under specific conditions of the environmental noise. SR is observed as an
increase of the output signal-to-noise ratio (SNR) upon the presence or injection of a specific amount
of noise. Hence, SNR is non-monotonic with respect to the amount of noise, and SR occurs at the
maxima of the curve where a subthreshold signal becomes detectable by the system. SR has been
used in Collins neural network model, exploiting external noise to support the recovery of an aperiodic
subthreshold input signal by a network of FitzHugh-Nagumo (FHN) neurons, [11]. In this network,
Fig. 1, every neuron’s inputs consist of the network input as well as external noise, while the outputs
converge to a summing node. Subthreshold and undetectable signals can be recovered at the network
output in a noisy envelope.

On the other hand, another type of SR which is called chaotic resonance (CR) has been investigated
using chaotic systems. CR can detect a subthreshold input signal by utilizing internal chaotic fluctua-
tions which are induced by chaotic dynamics instead of some external noise source. Furthermore, CR
has been observed in the electrical activity of some regions of the brain, where internal noise is used
to support the emergence of SR, e.g., [12, 13]. CR has been used in various microelectronic circuits,
for example exploiting internal chaotic fluctuations in [14, 15].

Exploiting internally generated noise appears a relevant method that has been promoted by nature
in the evolution of the brain. In engineered systems such as microelectronic circuits, eluding issues
related to generating and controlling external noise appears an advantage. This study exploits a
new type of SR which utilizes internal fluctuations that are induced by the network operation as
intrinsic chaotic fluctuations [16–19]. This study presents a circular network of FHN neurons which
take advantage of weighted internal signals that are propagated in a unidirectional manner as noise,
in order to detect a subthreshold input. Section 2 presents the network fundamental expressions
and topology. The major characteristics of the network setup and regime operation are defined in
Section 3. Section 4 presents a frequency analysis of the network and discusses its optimal operational
frequency range.

2. Unidirectional circular network of FHN neurons
A circular network of FHN neurons is formed such that each neuron receives the external input signal
stimuli, as well as the weighted contributions of its neighbors, as shown in Fig. 2. Each neuron’s output

165



Fig. 2. Proposed unidirectional network of FHN neurons showing all unidi-
rectional weighted connections.

is connected to a summing node which delivers the circuit output. Boundary conditions stipulate the
continuous connectivity, i.e., the last neurons of a physical arrangement connect to the first neurons,
following the weighted connectivity pattern that homogeneously applies to the circuit.

The dynamics of a FHN neuron is given by

du

dt
= u (1 − u) (u − a) − v + I(t),

dv

dt
= ε (bu − v)

where t is the time, u the membrane potential, v the recovery variable, ε the time constant, a and b

the system parameters, and I(t) the input signal. In this study, we define u as the output signal in a
FHN neuron.

Here we assume that analog weighted signals originating from closely-located neighbors are able to
act as noise, and the resulting dynamics that we propose is

dui

dt
= ui (1 − ui) (ui − a) − vi + wI(t) + Dξi, (i = 1, 2, · · · , N) (1)

dvi

dt
= ε (bui − vi) , (2)

where N is total number of neurons, i the neuron index, w the strength of the input signal, D the noise
amplitude factor, and ξi the noise input. In the case of bidirectional coupling among the neurons, ξB

i

can be represented by

ξB
i =

1
α0 +

∑n
j=1 αi−j + αi+j

⎛
⎝αiui +

n∑
j=1

αi−jui−j + αi+jui+j

⎞
⎠

where n is the number of connecting neighbors (n > 1), and α the connection coefficient. D enables
adjusting the total noise level within the network, whereas α enables individually adjusting an input
signal level originating from a neighbor neuron as a noise source.

Assuming that each neuron exhibits excitable properties [20], excitable waves propagate in both
directions, which results in potential wave collisions that would suppress the sustained wave prop-
agation. In order to guarantee the sustained wave propagation, we propose unidirectional coupling
as
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Fig. 3. Pascal’s triangle representing discretized bidirectional coefficients.

ξU
i =

1∑n
j=0 αi−j

⎛
⎝αiui +

n∑
j=1

αi−jui−j

⎞
⎠ .

Here we assume that the wave propagation is caused by a diffusion process, which results in having
the Gaussian impulse response. Hence, the α values are selected as the coefficient of the Gaussian
function which implements a non-linear function of the coupling factor with respect to the distance
between the neurons. In order to discretize the Gaussian function, we used Pascal’s triangle, as
shown in Fig. 3, where M represents the kernel index, and S represents the sum of all coefficients,
n (≡ �M/2�) represents the number of connecting neighbors from the center (i). For example, when
n = 4, we obtain

ξU
i

∣∣∣
n=4

=
70ui + 56ui−1 + 28ui−2 + 8ui−3 + ui−4
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which consists of weight connections following a rule based on the distance between the recipient
(ui) and sources (ui−1, ui−2, ui−3, and ui−4); the rule homogeneously applies in the network. The
weighted contributions of the neighboring neurons consist of an analog signal that can be considered
an internal noise; however, the behavior of the network is deterministic, and is predicted by the
equations governing its dynamics.

3. Operation of the unidirectional system

In order to study several of the fundamental characteristics of the operation of the network, an
external sinusoidal input I(t) which has suprathreshold amplitude of 0.075 as a bootstrap input
signal for generating internal noise, and has subthreshold amplitude of 0.05 later, and has an input
frequency of 10−4 Hz is applied in a circular network consisting of 500 neurons. At first, the system
parameters of the neurons are set to a = 0.1 with a variation of 5%, b = 0.24 with a variation of
1%. Using these parameters, the internal states of each neuron converge to 0 without a bootstrap
phase and an input signal. Neuron firings may follow different individual dynamics, depending on the
initial conditions, as well as the cumulated amplitude of external and internal stimuli. This sustained
level of activity impacts on the stimulation of forward-neighboring neurons, and thus on the wave
propagation. Henceforth, this metrics is used in the raster plot analysis consisting of the timespan
between an upwards and the downwards relaxation crossings of a threshold in the amplitude, rather
than the time of the spiking usually defined from a unique threshold crossing condition. The threshold
is selected at 0.6, i.e., slightly lower than the value observed on the constant plateau. Consequently,
the raster plots bear information related to the timing and timespan of the neuron firings as well as
their impact on the generation of travelling waves.

The collection of neurons that simultaneously fire when their internal states are higher than a
threshold value equal to 0.6 within one determined time-window, is herein named a bundle and is
drawn using red lines in Fig. 4, and is observed as the number of firing neurons within the segment
marked “a” which is extracted from the vertical axis as approximately 10 neurons. This number
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Fig. 4. Generation of traveling waves. (a) Graphical model of the circular
network, (b) raster plot, (c) input signal which has a bootstrap input sig-
nal I(t) = 0.075 sin(2πft) when t < 3,000 and a subthreshold input signal
I(t) = 0.05 sin(2πft) when t ≥ 3,000. The concomitant firing event of several
consecutive neighboring neurons, clearly showing the bundles forming traveling
waves. The parameters of the neurons are set to a = 0.1 with a variation of
5%, b = 0.24 with a variation of 1%, ε = 0.01 with a variation of 3%, w = 0.045
with a variation of 1.8%, and the noise amplitude factor (D) which weights all
noise as well as self-feedback connections is set to D = 0.057.

typically varies in time, which exhibits the stochastic nature of the process and confirms the inter-
pretation of the internal stimuli as noise. In Fig. 4, a chain of firing neurons is observed to induce
firing in the downstream-located neurons that exploit prior firings as internal noise. The number of
neurons participating in a bundle is a function of the amplitude of the stimuli, the number of forward
connections and their strengths, the initial random conditions as well as the instantaneous status
of variability-subjected parameters of the FHN neurons. An analytical expression of the number of
neurons in a bundle can be determined by iteratively applying the noisy FHN neuron expression in (1)
and (2), including variability and random initializations. Hence, a rigorous algorithmic description of
this process appears impractical in terms of its applicability.

Every neuron in the network is consecutively stimulated to fire, immediately following its prede-
cessor in the chain forming a chain-reaction. Hence, a wave propagates which circulates around the
network. Nevertheless, the wave that travels throughout the network consists of the consecutive firing
of all neurons which participate in consecutive bundles. In addition to internal parameters primarily
involving the refractory period of each neuron and the time-constant of the low-pass filter created by
the neuron interconnectivity, the propagation speed has a strong dependence on the frequency of the
stimuli.

Each neuron in a bundle fires a certain number of times, and obeying its own firing frequency that
is dictated by its internal refractory period. This time-window of consecutive firings is named period
of activity. In the case of a periodic input, the period of activity which corresponds to the high-
amplitude period of the stimuli is followed by a period of low activity or inactivity, which corresponds
to the low-amplitude phase of the stimuli. The inactivity period of neuron No. 0 is observed as the
time interval marked “b” in Fig. 4. Eventually, a new bundle is stimulated which starts a new wave
propagating through the network. At any time, several waves propagate through the network.

New bundles form in the network during the high-amplitude phase of the stimuli, mostly. Figure 4
shows the generation of several bundles during a bootstrapping phase by t = 3,000, and exclusively
during which a stimuli of extremely high amplitude is applied, at startup of the system for generating
internal noise. Following their generation, waves propagate and upon reaching neuron No. 499 con-
tinue at neuron No. 0, hereby obeying cyclic boundary conditions. Variability of individual neuron’s
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parameters dictates a degree of randomness in the generation of propagating waves, which may also
enable the generation of a new bundle during the low-amplitude phase of the stimuli, in rare cases.
Along time, the density of waves propagating in the network, defined as the number of bundles that
exist at a certain time, varies.

The wave propagation through the network is sustained by internal noise, and the propagation also
proceeds in absence of external stimuli. This phenomena is absolutely crucial to the correct operation
of the network in subthreshold stimuli, since the waves represent permanent internal noise that is
required to support the SR process that enables extracting subthreshold signals by creating a peak of
SNR at some appropriate noise level. The propagation speed of a wave through the network is governed
by the dynamics of individual FHN neurons that consecutively stimulate their forward neighbors in a
chained reaction. The circular configuration of the network promotes self-stimulation into a stationary
state, under conditions that enable the stability of the system. The general topology of the circular
network resembles a ring oscillator’s, and an approach which is inspired by the extensive study carried
over ring oscillators can be applied to express the conditions of self-oscillation of the network, or
expressed differently, the necessary condition that allow several waves to sustain themselves inside
the circular network.

SR is evidenced from a peaking correlation value that is obtained at a certain level of noise within
the network. The correlation value (C) is given by

C =
〈I(t) · O(t)〉 − 〈I(t)〉〈O(t)〉√〈I(t)2〉 − 〈I(t)〉2√〈O(t)2〉 − 〈O(t)〉2 , (3)

〈X(t)〉 ≡ 1
T

∫ t

t−T

X(t)dt

where I(t) represents the common input, O(t) the summation of the outputs of FHN neurons, T the
time window of correlation calculation.

In practical terms, the correlation value ranges over [−1, 1]; though any value in the range [−0.5, 0.5]
indicates the absence of correlation, and the calculation method does not allow any additional mean-
ingful interpretation; values close to −1 or 1 are indicative of correlation.

As shown in Fig. 5(a), the amplitude of noise become large when the noise strength D is increased.
Therefore, the system parameter D contributes to the characteristics of internal noise. Figure 5(b)
shows that the weighted sum (ξ0) of its own predominant firing (neuron No.0) and four predecessors
firing contributions behave as internal noise which has power at frequencies higher than the input
signal. The analysis of the relationship between the correlation value and noise strength D presented
in Fig. 5(c) enables observing a clear SR behavior in the form of a maximum (peak) of the correlation
value that is obtained by adjusting an appropriate amount of noise as shown in [19, 21]. When the
noise amplitude is increased from a low amplitude value, the correlation value is known to increase
in any network. When the number of FHN neurons is small (N = 50, 100, 200), the correlation value
decreases after reaching a peak value. As shown in Fig. 6, the noise generated in a configuration
consisting of a single coupling neuron is not sufficient to sustain propagating waves. The correlation
value is observed to increase with a higher number of coupling neurons, showing over 90% of correlation
value if n ≥ 4, a saturation level, and sharply decreasing at a number of couplings higher than 9 at
90% of correlation value, due to an over-averaging effect through the weighted summation of activities
of a neuron’s neighbors as noise.

4. Frequency response of the unidirectional FHN neural network
The frequency performance analysis of the network pertains to the capacity of the network to sustain
propagating waves in the presence of an input signal of high frequency. The frequency bandwidth of
individual FHN neuron has an influence on the global network behavior; its study has been carried out
earlier, and is not repeated in this work. Different operation regimes and an optimum window of input
frequency operation are explained in the following, and the trade-offs involved in the improvement of
the window of correct operation are discussed.
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Fig. 5. (a) Noise term Dξ0 which is applied to neuron No. 0 and consists
of weighted summation of activities from itself and four predecessor neurons
(N = 100). (b) Power spectrum of the noise term Dξ0 which has power in a
wider bandwidth than the sinusoidal input signal (N = 100 and D = 0.09).
(c) Correlation value with respect to the noise amplitude for different numbers
of neurons in the network (N = 50, 100, 200, 500). The following conditions
are assumed, a = 0.1 with a variation of 5%, b = 0.24 with a variation of 1%,
ε = 0.01 with a variation of 3%, w = 0.045 with a variation of 1.8%, I(t) =
0.075 sin(2πft) when t < 3,000 and I(t) = 0.05 sin(2πft) when t ≥ 3,000, and
input frequency f = 10−4 Hz. T is set at 250,000.

The frequency behavior study of electrical systems is traditionally based on the amplitude response
of the system to a sinusoidal input of a frequency varying over a specified bandwidth. The amplitude
is selected as an optimal metrics that is suitable to identify the transfer function of a single-output
system. Though, the unidirectional circular network of FHN neurons presented in this research
formally has one single output, the signal observed from this output is a linear combination of multiple
signals generated by non-linear oscillators. Furthermore, the system performance is not assessed in
terms of the system amplification, but in terms of the capacity of the system to extract a subthreshold
input signal. Expressed differently, though amplification occurs and is a necessary condition to the
operation of the system, its performance can not be defined in terms of pure amplification that would
indifferently affect input signal as well as external and internal noise, but is correctly identified as the
correlation value previously defined in (3).

In Fig. 7, four ranges of interpretation of the network response are identified, which are discussed
in detail in the following subsections, namely:

• FR1: plateau of the spectral response where correct network behavior is observed;

• FR2: first roll-off of the spectral response where correct behavior is still observed, and hence
operation within the part of this region over the correlation value of 0.5 is acceptable;

• FR3: second roll-off and bottom plateau of the spectral response where incorrect behavior is

170



Fig. 6. Correlation value with respect to the number of unilateral coupling
connections when D = 0.08. The following conditions are assumed, a = 0.1
with a variation of 5%, b = 0.24 with a variation of 1%, ε = 0.01 with a
variation of 3%, w = 0.045 with a variation of 1.8%, I(t) = 0.075 sin(2πft)
when t < 3,000 and I(t) = 0.05 sin(2πft) when t ≥ 3,000, and input frequency
f = 10−4 Hz. T is set at 250,000.

Fig. 7. Frequency response of the network. The frequency response of the
system is presented, for a circuit configuration defined as follows, a = 0.1 with a
variation of 5%, b = 0.24 with a variation of 1%, ε = 0.01 with a variation of 3%,
w = 0.045 with a variation of 1.8%, N = 500, the noise amplitude factor D =
0.057. Input signal which has a bootstrap input signal I(t) = 0.075 sin(2πft)
when t < 3,000 and a subthreshold input signal I(t) = 0.05 sin(2πft) when
t ≥ 3,000.

observed;

• FR4: uptake of the spectral response in the high frequency range, where incorrect behavior is
observed.

Frequency ranges FR1 and FR2
The frequency response of the network shows a plateau at low frequency. In this domain of op-

eration, the network operates properly, and according to its expected behavior, i.e., SR occurs and
enables the detection of a subthreshold input signal. Within the first part of the roll-off of the fre-
quency spectrum, correct operation of the network is preserved. The time-domain operation of the
network stimulated with a subthreshold input at a frequency of 10−4 Hz, and the time-domain oper-
ation is shown in Fig. 8. The red line represents a sinusoidal input which has a bootstrap behavior
when t < 3,000; the green spiking line represents the time course of u0, and the blue line represents
the network output.

Optimally, the network should be operated within the region of the plateau, that guarantees the
proper conditions supporting the SR process. We consider the correlation value as the source of
identification parameter as well as the fact that the part of zone FR2 is acceptable over the correlation
of the value 0.5 as shown in Fig. 9, at a frequency of the input stimuli of 0.005 Hz.
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Fig. 8. Time-domain operation of the network that correctly operates in
FR1.

Fig. 9. Time-domain operation of the network that operates acceptably in
FR2.

Frequency range FR3
The network should not be operated outside of its frequency range of correct operation, such

as frequency ranges FR3 and FR4. In addition, the calculation method applied to processing the
correlation value does not yield result in the range of [−0.5, 0.5] that may adequately be interpreted.
Figure 10 shows the time-domain operation of the circuit in FR3, at a frequency of the input stimuli
of 0.02 Hz. In frequency range FR3, the network output does not follow the input. The signal is
integrated by the neurons due to the excessive input frequency, and a neuron output is observed as
switching at a lower frequency than the input.

Two interesting features are observed in the time-domain curve. First, the output integrates a
number of input cycles prior to switching. In a large network, the number of integrators that contribute
to the integration is large. Eventually, the switching time can not be predicted with certainty, and the
switching period time is chaotic. Second, the subthreshold input signal is observed as a contributor
to the output signal. Direct neuronal input-to-output coupling is the cause of this phenomena.

Frequency range FR4
Frequency range FR4 as FR3 represents a frequency range that is not adapted to the proper

operation of the network. Figure 11 shows the time-domain operation of the circuit in FR4 at a
frequency of the input stimuli of 0.035 Hz. The difficulty of neurons to following the subthreshold
stimuli is more pronounced than in FR3. Nevertheless all parts of the curve located within the limits of
the coefficient factor of [−0.5, 0.5] should be carefully interpreted, and the exact curve is not relevant.

The correct operation of the network requires a bandwidth-limited input signal following the FR1
and FR2 criteria explained above. A method that enables increasing the operation bandwidth is
discussed in the following.

Parameter ε is a determinant parameter in the dynamics of an individual FHN neuron which has a
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Fig. 10. Time-domain operation of the network that operates in frequency
range FR3.

Fig. 11. Time-domain operation of the network that operates in frequency
range FR4.

Fig. 12. Correlation values with respect to frequency and time constant ε.

significant influence over recovery variable v, following expression (2). In physical terms, ε represents
a time constant, and as such impacts the frequency response of individual neurons as well as the
entire network. Figure 12 shows the frequency response of the circuit in terms of its coefficient factor.
Nine values of ε are selected, each corresponding to a different response. A different extension of the
plateau that determines FR1 is observed for increasing values of ε. The curve shows an increase of
the plateau of correct operation for increasing values of ε, until saturation is reached.
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5. Conclusion
We proposed a nonlinear dynamical system exhibiting stochastic resonance (SR) induced by the
system’s internal activities (noise) as the solution to avoid the burden of generating independent
noise for each unit so as to induce SR in the traditional manner. The system consists of a 1-D array
of excitable FitzHugh-Nagumo neurons with cyclic boundary condition, where the action potential
propagate on the 1-D space as excitable waves. Each neuron accepts common inputs, whereas the
systems output is represented by the sum of all the neurons, as in conventional array-based SR
systems.

Our key proposal here is that each neuron accepts temporal noise generated by the neuron’s neigh-
bors, i.e., the sum of asynchronous activities among the neighbors are considered as noise. To sustain
the noise (neuron’s activities), we introduced unidirectional coupling between the neurons, which re-
sults in one-way excitable wave propagation, avoiding extinction of excitable waves due to bidirectional
wave collision.

Through extensive numerical simulations, we found that i) excitable waves propagated on the
network in one way, and neuron’s activities were sustained without the subthreshold input, ii) when
the subthreshold input magnitude was increased, with the help of the sustained excitable waves (noise),
neurons were able to resonate with the input stochastically, which represented SR without conventional
(external) noise sources, and iii) the number of connected neighbors (n), which characterized the
amount of internal Gaussian noise, was the most important parameter as expected, and n must be in
a range of [4, 9] with our simulation setups, to ensure strong correlation between the input and the
output.

The frequency response of the network has then be studied. Four input frequency domains have
been identified, which quantitatively distinguish from their correlation values. The network only
correctly operates in the two lower-frequency domains. Henceforth, a method enabling improving the
frequency response which is based on optimizing the time constant has been proposed.

The proposed network demonstrates SR based on internally (or intrinsically) generated noise, which
would significantly relax design constraints of hardware implementations. Exploiting noise in thresh-
old systems as described in this paper may be used to improving the capability of audio or image
sensors subthreshold signal detection. Moreover, the new SR scheme which utilizes internal noise in
bistable systems may be considered a possible candidate for increasing memory or data link trans-
mission reliability under aggressively noisy environments.
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