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Reaction–diffusion (RD) chemical systems are known to realize sensible computation when both
data and results of the computation are encoded in concentration profiles of chemical species;
the computation is implemented via spreading and interaction of either diffusive or phase waves,
while a silicon RD chip is an electronic analog of the chemical RD systems where the concen-
tration profiles of chemicals are represented by voltage distributions on the chip’s surface. In
this paper, we present a prototype RD chip implementing a chemical RD processor for a well-
known NP-complete problem of computational geometry — computation of a Voronoi diagram.
We offer experimental results for fabricated RD chips and compare the accuracy of information
processing in silicon analogs of RD processors and their experimental “wetware” prototypes.

Keywords : Reaction–diffusion system; reaction–diffusion chip; nonstandard computing; cellular
automata; Voronoi diagram.

1. Introduction

A reaction–diffusion (RD) processor is a real chem-
ical medium, typically a thin-layer solution, gel or
film, which transforms data to results in a pre-
dictable, sensible and pre-programmable way. In
RD processors data are represented by perturbances
of medium’s characteristics, e.g. inhomogeneous
concentration profile of one reagent. Excitation
waves or diffusive waves of reagents travel from the
perturbances, interact with each other, and produce
either stationary, precipitate concentration profile,
or dynamic, oscillatory field, structures. The final

state of the medium’s spatial dynamics represent a
result of the RD computation [Adamatzky, 2001].
Recently experimental prototypes of RD processors
were applied to solve a wide range of computational
problems, including image processing [Kuhnert,
1989; Rambidi, 1998, 2002; Adamatzky et al., 2002],
path planning [Steinbock, 1995; Agladze, 1997;
Adamatzky & De Lacy Costello, 2003], logical com-
putation [Tóth & Showalter, 1995; Adamatzky &
De Lacy Costello, 2002a; Motoike & Adamatzky,
2005] and robot navigation [Adamatzky et al.,
2004b].
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Semiconductor RD computing LSIs (chips)
implementing RD dynamics have been proposed in
the literature. These chips were mostly designed
by digital, analog, or mixed-signal complementally-
metal-oxide-semiconductor (CMOS) circuits of cel-
lular neural networks (CNNs) or cellular automata
(CA). Electrical cell circuits were designed to imple-
ment several CA and CNN models of RD sys-
tems [Adamatzky et al., 2004a; Asai et al., 2002;
Bonaiuto et al., 2001; Matsubara et al., 2004;
Rekeczky et al., 2003; Shi & Luo, 2004], as well
as fundamental reaction–diffusion equations [Asai
et al., 2004; Asai et al., 2005; Daikoku et al., 2002;
Karahaliloglu & Balkir, 2004; Serrano-Gotarredona
& Linares-Barranco, 2003]. Each cell is arranged
on a 2D square or hexagonal grid and is con-
nected with adjacent cells through coupling devices
that transmit a cell’s state to its neighboring
cells, as in conventional CAs. For instance, an
analog-digital hybrid RD chip [Asai et al., 2002]
was designed for emulating a conventional CA
model for Belousov–Zhabotinsky (BZ) reactions
[Gerhardt et al., 1990]. A full-digital RD processor
[Matsubara et al., 2004] was also designed on
the basis of a multiple-valued CA model, called
excitable lattices [Adamatzky, 2001]. An analog cell
circuit was also designed to be equivalent to spatial-
discrete Turing RD systems [Daikoku et al., 2002].
A full-analog RD chip that emulates BZ reactions
has also been designed and fabricated [Asai et al.,
2005]. Furthermore, blue-prints of non-CMOS RD
chips have been designed; i.e. a RD device based on
minority-carrier transport in semiconductor devices
[Asai et al., 2004] and a single-electron RD device
[Oya et al., 2005].

To compare the accuracy of information pro-
cessing in silicon analogs of RD processors and their
experimental “wetware” prototypes we selected
a well-known NP-complete problem of computa-
tional geometry — computation of a Voronoi dia-
gram (VD).

The paper is structured as follows. Section 2
provides a background of the VD problem. Designs
and operational characteristics of laboratory chem-
ical processor for VD computation are outlined in
Sec. 3. In Sec. 4 we make a logical transition from
Euclidean VDs, approximated in chemical proces-
sors, to discrete VDs, calculated in RD chips with
the help of cellular automaton models. Structure
and electronic implementation of silicon RD pro-
cessor are discussed in Sec. 5. Section 6 discusses
the accuracy of information processing in silicon

analogs of RD processors and their experimental
“wetware” prototypes.

2. Voronoi Diagram

Given a nonempty finite set P of planar points, a
planar Voronoi diagram (VD) of the set P is a par-
tition of the plane into such regions, that for any
element of P, a region corresponding to a unique
point p contains all those points of the plane that
are closer to p than to any other node of P. A unique
region

vor(p) = {z ∈ R2 : d(p, z) < d(p,m)

∀m ∈ R2 m �= z} (1)

assigned to point p is called a Voronoi cell. A bound-
ary of the Voronoi cell of a point p is built of seg-
ments of bisectors separating the point p and its
geographically closest neighbors from P. A union
of all boundaries of the Voronoi cells comprises the
VD (Fig. 1):

VD(P ) =
⋃
p∈P

∂ vor(p).

A key feature of VD construction is a partition of
two- or three-dimensional space on a sphere of influ-
ences generated from a given set of objects, points
or arbitrary geometrical shapes. Therefore, VDs are

Fig. 1. Voronoi diagrams of planar points computed in
GeoWin [Bartuschka et al., 1998–2000].
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widely applied in data analysis, like identificaiton
of star and galazy clusters [Pasztor, 1994], model-
ing gravitational influence [Drysdale, 1993], cell and
tissue growth [Honda & Eguchi, 1980; Blackburn
& Dunckley, 1996], ecological competition models
[Barlow, 1974], crystal growth [Hargittai, 1986],
market analyses [Okabe et al., 2000], molecular
modeling [Pontius et al., 1996], animal skin pig-
mentation [Walter et al., 1998; Meinhardt, 1995],
geographical modeling of surfaces [Bray et al.,
1976]. Many computer science applications include
pattern recognition (via computation of a skele-
ton [Adamatzky et al., 2002]), path planning in
the presence of obstacles [Earnshaw, 1988], and
computer graphics or computer generated images
[Deussen et al., 2000]. The Voronoi tessellation is
also extensively used in the field of computational
geometry where it is applied to solve variations on
the nearest neighbor problem [Graham & Yao, 1990;
Preparata & Shamos, 1985].

The RD algorithm (CA model) for the compu-
tation of a VD was first constructed in [Adamatzky,
1994, 1996]. Experimental prototypes of chemi-
cal RD processors were designed in [Tolmachev &
Adamatzky, 1996; De Lacy Costello, 2003; De Lacy
Costello & Adamatzky, 2003]. The lower boundary
of VD computation (of a d-dimensional set of n
points) is Θ(n) and the worst-case complexity is
Θ(n�d/2�) [Preparata & Shamos, 1985]. CA and RD
algorithms exploit natural parallelism of the prob-
lem, namely distance between neighboring points is
represented by time of wave-front traveling in the
space, therefore time complexity of VD computa-
tion in RD medium is determined by a maximum
distance between two geographically neighboring
points of given set, which in turn is limited by a
diameter D of the given planar set. That is, the
worst-case complexity of RD computation of VD is
Θ(D), independent dimension and number of
points. Assuming, we can pack given set-preserving
topological relationships between its element, the
lower boundary will be Θ( d

√
n), in the d-dimensional

case.

3. Chemical Implementation of
Voronoi Diagram

In experimental prototypes of RD processors for
computation of VD, an initial set of data objects
(points, segments or shapes) is represented by a con-
centration profile of one reagent, a planar substrate
contains another reagent. The reagent, representing

the data objects diffuses to form a colored phase in a
reaction with the substrate-reagent. At sites where
two diffusion wave fronts meet, no colored phase is
formed and the substrate retains its uncolored state.
These uncolored loci of the computation space rep-
resent edges of required VD. To compare accuracy
of results produced by silicon RD chips with those
developed in experimental chemical RD processors,
we employed three variations of chemical proces-
sors, originally described in [De Lacy Costello et al.,
2004a, 2004b].

3.1. Semi-stable copper processor

Agarose gel (2% by weight, Sigma-Aldrich)
with 0.09 M potassium ferricyanide K3[Fe(CN)6]
(Merk) was prepared and poured into Petri dishes
(gel layer 6 mm), and allowed to cool. A 2.93 M solu-
tion of CuCl2 was also prepared. The gel surface
was marked with a glass pipette and 5 mm of the
outer electrolyte was poured onto the gel. VDs are
formed in a controlled manner as the centers of the
cells are where the gel surface has been marked.
Without marking a homogeneous precipitate would
have resulted [Fig. 2(a)].

3.2. Palladium processor

A gel of agar (1.5% by weight, agar select Sigma–
Aldrich Company Ltd. Poole, Dorset, BH12 4XA)
containing palladium chloride (Palladium (II) chlo-
ride 99%, Sigma Aldrich Company Ltd.) in the
range 0.2%–0.9% by weight (0.011–0.051 M) was
prepared by mixing the solids in warm deionised
water. The mixture was transferred to Petri dishes.
The unreacted gel processors were then kept for
30 min. A saturated solution (at 20◦C) of potassium
iodide (ACS reagent grade, Aldrich Chemical Co.)
was used as the outer electrolyte for the reactions.
Shapes (to be separated by VD) were made from fil-
ter paper and soaked with outer electrolyte before
being placed on the gel surface [Fig. 2(b)].

3.3. Prussian blue processor

The second type of reaction–diffusion processors
employs the ferric ion/ferrocyanide couple where
the primary product formed is ferric ferrocyanide
(prussian blue, Fe4(Fe(CN)6)3). Potassium ferro-
cyanide (K4Fe(CN)6 · 3H2O) 2.5 mg/ml (5.91 mM)
((99+%) BDH Chemicals Ltd., Poole, Dorset) was
mixed with a 1.5% gel of agar (Agar, select, Sigma
chemical company). The mixture was heated with
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(a) (b)

(c) (d)

Fig. 2. Voronoi diagrams of (a) four points computed in unstable copper processor, (b) rectangles computed in palladium
processor, (c) T-shape computed in Prussian blue processor, (d) four points computed in stable Prussian blue processor.

a naked flame until boiling and then removed from
the heat and decanted into Petri dishes (5 ml per
plate). A Ferric ion solution was used as the outer
electrolyte (300 mg/ml, 0.74 M, Iron (III) nitrate
nonahydrate, but any highly pure soluble ferric
ion source will suffice, 99.99+%, Aldrich Chemical
Company). The processor was used to calculate the
internal Voronoi diagram, or skeleton, of a planar
T-shape. The T-contour was cut out from off from
filter paper and saturated with the outer electrolyte
before being placed on the gel [Fig. 2(c)]. Alter-
natively, drops of the outer electrolyte were placed
onto the gel surface [Fig. 2(d)].

4. Cellular Automaton Computation
of Voronoi Diagram

To design a silicon analogue of RD “wetware” proce-
ssors we must firstly uncover an abstract mechanic
of computation in experimental chemical devices,
and only then transfer key rules of micro-volume
state transitions to electronic schemes of elementary
units of RD chips. We will use cellular automata
as a device transient between real-life chemistry
and silicon chips. A cellular automaton (CA) is a
two-dimensional array of finite automata, which
updates their states in parallel, in discrete time,
and depending on states of their closest neighbors.
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Let us consider the following model, RD chemi-
cal excitable model A1. Cells of the automaton take
state from interval [ρ, α], where ρ is a minimum
refractory value, and α is maximum excitation
value; ρ = −2 and α = 5 in our experiments.
Cell x’s state transitions are strongly determined
by normalized local excitation σt

x =
∑

y∈ux
(yt/q

(|ux|)). Every cell x updates its state at time
t + 1, depending on its state xt and state ut

x of
its neighborhood ux (in experiments we used
15 × 15 cell neighborhood) as follows:

xt+1 =




α, if xt = 0 and σt
x ≥ α

0, if xt = 0 and σt
x < α

xt + 1, if xt < 0
xt − 1, if xt > 1
ρ, if xt = 1

This is how “excitation” spreads in computational
space, waves of excitation interact and annihilate.
To allow the processor to memorize sites of wave
collision we added a precipitate state pt

x of cell x.
Concentration pt

x of precipitate at site x at moment
t is calculated as pt+1

x ∼ |{y ∈ ux : yt = α}|.
CA A1 computation of VD of four points, two

segments are shown in Figs. 3(a) and 3(b), and
approximation of internal VD, or a skeleton, in
Fig. 3(c). The model A1 represents VD in “unlike
phase” with experimental chemical representation
of VD: sites of higher concentration of precipitate in
configurations of A1 correspond to sites with low-
est precipitate concentration in experimental pro-
cessors. Comparing diagrams computed by CA A1

with those developed in RD experimental chemical
processors, Fig. 2, we find that there is a remark-
able correspondence between density distribution in
bisector representation and geometry of bisectors.

Despite being pleasantly naturalistic the model
A1 might be too complicated for LSI implemen-
tation. So, we have simplified A1 to model A2 by
assuming that every cell takes just four states, rest-
ing ◦, excited +, refractory −, and precipitate #. A
cell in A2 updates its state as follows:

xt+1 =




+, if xt = ◦ and 0 < ηt
x ≤ 4

#, if ((xt = ◦ or xt = +) and ηt
x > 4)

or xt = #
−, if xt = + and ηt

x ≤ 4
◦, otherwise

(1)

Model A2 was discussed in detail in [De Lacy
Costello et al., 2004], so we do not study it in detail

(a)

(b)

(c)

Fig. 3. Voronoi diagrams of (a) four points, (b) two line
segments, (c) T-shape computed in CA model A1.
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in the present paper, but instead move straight to
the silicon implementation.

5. Silicon Implementation of
CA VD Model

We designed electrical circuits implementing model
A2, which was previously given by Eq. (1) in the
preceding section, for VD computation and skele-
tonization. Each cell of the CA is implemented
on a unit (cell) circuit, which results in the two-
dimensional array construction of the cell circuits.
To increase the integration density of the cell cir-
cuits, each cell circuit has to be designed as compact
as possible. Therefore we propose an analog-digital
hybrid circuit for the cell.

To store the four types of cell states in model
A2, i.e. resting ◦, excited +, refractory −, and pre-
cipitate #, we employ a 2-bit static memory (two
D-type flip-flop circuits: D-FFs) for each cell. The
cell state is encoded in 2-bit binary values, as shown
in Table 1. A cell’s state encoded in the memory is
updated according to the current state of the cell

and the number of excited cells among its neighbor-
ing cells.

The cell transition (1) is represented by a tran-
sition table shown in Table 2. In the table, q1 and q2

represent the present state of a cell in 2-bit binary
values (see Table 1 for translation), sn is a binary
value that becomes logical “1” when the number of
surrounding excited cells exceeds n (otherwise sn

is logical “0”), d1 and d2 represent the subsequent
state of a cell after the transition. If a cell is in its
excited state [(q1, q2) = (“1”, “1”)] and the number
of excited cells among the neighbors exceeds 4 (s4 =
“1”), the subsequent cell state is set at precipitate
[(d1, d2) = (“1”, “0”)]. If (q1, q2) = (“1”, “1”) and
s4 = “0”, the subsequent cell state is refractory

Table 1. Translation table of the cell states.

Cell State q1 q2

Resting (◦) “0” “0”
Refractory (−) “0” “1”
Precipitate (#) “1” “0”

Excited (+) “1” “1”

Table 2. Translation table of the cell states. “×” represents “no matter”.

# of Excited Neighbors Current State Subsequent State Transition

> 0 (s0) > 4 (s4) q1 q2 d1 d2 t → t + ∆t

× “1” “1” “1” “1” “0” + → #
× “0” “1” “1” “0” “1” + → −
× “1” “0” “0” “1” “0” ◦ → #

“1” “0” “0” “0” “1” “1” ◦ → +

[(d1, d2) = (“0”, “1”)]. If the current cell is rest-
ing [(q1, q2) = (“0”, “0”)] and s4 = “1”, the subse-
quent cell state is precipitate [(d1, d2) = (“1”, “0”)].
If (q1, q2) = (“0”, “0”)] and s0 = “1”, the subse-
quent cell state is excited [(d1, d2) = (“1”, “1”)].
Otherwise, no transition occurs. This indicates that
transition occurs only when the current cell state
matches the four cases above, i.e. when d1 + d2 =
logical “1”.

We design a logic circuit that determines the
subsequent state of a cell. We call the circuit
“transition-decision circuit” (TD circuit). From
Table 2, we easily obtain

d1 = s4q1q2 + s4q1q2 + s0s4q1q2

= s4q1q2 + q1q2(s0 + s4),
d2 = s4(q1q2 + s0q1q2).

q1

q1

EXCi output

q2

q2

s0

s4

d1

d2

Fig. 4. Transition-decision circuit.
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Figure 4 shows a basic construction of the TD
circuit that is implemented by conventional logic
gates. As described in the previous section, a cell
state is changed by the number of its surrounding

EXC1 EXC2 EXC8
s0

Iref s4

VDD

GND

current-mode comparator

M1

DA converter

M2

M3 M4

Iref

5Iref

Fig. 5. DA converter and current-mode comparator.
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Fig. 6. Cell circuit for model A2.

“excited” cells. In order to give the “excited” infor-
mation to its neighbors, the TD circuit produces a
signal EXCi where EXCi becomes logical “1” only
when (q1, q2) = (“1”, “1”) (otherwise, EXCi is “0”).

Here, sn is a binary value that represents
whether the number of surrounding excited cells
exceeds n or not. To obtain sn signals, we must
count the number of surrounding excited cells.

(MOSIS AMIS 0.5 µm 2-poly3-metal SCMOS)

29
7 

λ

338 λ

Fig. 7. Cell layout including a photo detector, TD circuit,
DA converter, current-mode comparator, 2-bit memory cir-
cuits, and clock control circuit.

RD chip
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d2

x y

z

x y

address 
encoder

analog out

digital 
out

z

d1

d2

Optical input
with 

glass masks

Analog oscilloscopes

Fig. 8. Experimental setup.
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Model A2 requires both s0 and s4 signals because
of conditions ηt

x > 0, ηt
x ≤ 4 and ηt

x > 4 in Eq. (1).
To detect them, we designed a current-mode ana-
log circuit, as shown in Fig. 5. The circuit consists
of a conventional DA converter and current-mode
comparator. In the circuit, dimensions of all MOS
transistors are identical. The DA converter receives
EXCi signals from its eight neighbors (EXC1,
EXC2, . . . , EXC8). The current M1 is obtained
by multiplying Iref by the number EXCi =
“1” because the current M2 (= Iref) is copied to
all nMOS transistors whose source terminal is con-
nected to the ground, and nMOS transistors receiv-
ing EXCis act as current switches. The current
M1 is copied to M3 and M4. If the current M3 is

larger than M2 (= Iref), s0 becomes “1”, and if the
current M4 is five times larger than M2 (= 5Iref), s4

becomes “1”. This circuit is quite compact as com-
pared with conventional digital counters. Therefore
it is useful for large scale integration of RD cell
circuits.

The output of the TD circuit (d1, d2) are
directly connected to the memory circuits (D-FFs).
Now assume that the current cell state stored in
the D-FFs (q1, q2) satisfied one of the conditions
listed in Table 2. A clock signal φ is given to the
D-FFs through a clock control circuit that provides
φ to the memory circuits only when d1 + d2 = “1”.
Thus, the D-FFs capture input data (d1, d2) and
update the current state (q1, q2) to (d1, d2). Figure 6

Fig. 9. Spatiotemporal patterns on the fabricated RD chip (VD operation with two bars).
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shows the entire construction of a cell circuit that
consists of a TD circuit, DA converter, current-
mode comparator, memory circuits and clock
control circuit.

We fabricated a prototype CA RD chip that
implements 16 × 16 cells using 0.5-µm double-poly
triple-metal n-well CMOS process (MOSIS, Vendor:
AMIS). The chip can accept parallel optical inputs,

which is very useful for parallel image-processing
applications. Figure 7 shows the layout of a cell cir-
cuit, including a photo detector (simple pn junction
between p-substrate and n-diffusion) and additional
switching circuits for reset and readout operations.
All circuit areas except for photodetectors were
masked by top metal. The resulting cell size was
297λ × 338λ (λ = 0.3 µm).

Fig. 10. Spatiotemporal patterns on the fabricated RD chip (VD operation with two points).
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We recorded spatiotemporal patterns of the
fabricated RD chip with the following readout
circuitry. Figure 8 shows our experimental setup.
Initial patterns were given by optical images
through a microscope where bright areas were set as
“excited” states and dark areas were set as “resting”
states. In the fabricated RD chip, each cell cir-
cuit was located beneath a wire crossing row- and
column-address buses, and was connected to two
common-output wires through a transfer gate. This
gate connects the cell’s output to the common wires
when both the row and column buses are active.
Thus a cell’s outputs (d1 and d2) appeared on the
common output wires when the cell was selected
by activating the corresponding row and column
buses simultaneously. We could obtain a binary
stream from the common output wires by selecting
each cell sequentially. Using a conventional display
technique with an external address encoder that
produces both analog and digital addressing signals,
the binary streams of d1 and d2 were reconstructed
on analog oscilloscopes operating in x–y Lissajous
modes where z [brightness at (x, y)] accepts d1

or d2. Therefore, we can observe spatiotempo-
ral patterns of d1 and d2 as brightness in the
display.

Figure 9 shows the snapshots of the displays we
recorded. Each bright spot represents a cell where

d1 or d2 is logical “1”. In the experiment, the supply
voltage was set at 5 V, and the system clock was
set at low frequency (2.5 Hz) so that “very-slow”
spatiotemporal activities could be observed visually
(the low frequency was used only for the visualiza-
tion, and was not the upper limit of the circuit oper-
ation). First, we applied bar-shape light to cells on
the left and right of the chip. The circuit exhibited
the expected results; i.e. two excitable waves of
excited cells triggered by the side cells propa-
gated toward the center and precipitated when they
collided.

Figure 10 shows other snapshots with different
initial conditions. In this experiment, we applied
pin-spot lights to two cells at top-left and bottom-
right corners of the chip. Two excitable waves were
generated by these trigger inputs. When they col-
lided, diagonal cells were precipitated, as expected.
These results indicate that the fabricated chip could
produce a VD diagram, although the spatial reso-
lution is low in the prototype chip.

Figures 11 and 12 show examples of skeleton
operation of a T and “+” shaped images. As initial
images, we make a glass mask where “T” and “+”
areas are exactly masked. Therefore, cells under the
“T” and “+” areas are initially resting and the rest
are initially excited. At its equilibrium, skeletons of
“T” and “+” were successfully obtained.

Fig. 11. Spatiotemporal patterns on the fabricated RD chip (skeleton operation with “T” shape).
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Fig. 12. Spatiotemporal patterns on the fabricated RD chip (skeleton operation with “+” shape).

6. Chemicals versus Silicon

We discussed the formation of Voronoi diagrams in
spatially extended two-dimensional nonlinear sys-
tems: experimental chemical processors, cellular-
automaton models and LSI chips. The underlying
microscopic processes in these systems are abso-
lutely different, however phenomenology of pattern
formation is remarkably similar and thus allowed us
to employ interaction of spreading pattern in con-
structing bisectors of the diagram.

In all systems propagating fronts are initiated
at given planar points, in each particular system
the fronts propagate with the same speed and thus
fronts initiated at two neighboring points collide at
sites equidistant from these points. Thus geograph-
ically neighboring points “detect” and “interact”
with each other by means of spreading patterns.
Using biological analogies we can say that the data
points expand their “receptive” fields until they
encounter “receptive” fields of other data points.

In principle, one could use classical excitable
media to subdivide the space into Voronoi cells
[Adamatzky & De Lacy Costello, 2002b]. However,
excitation waves always annihilate when they col-
lide, and sites of the wave front collision return to
original resting state. Thus excitable media based
processors do not produce stationary outputs, and
special computational techniques would be required
to extract the results of the computation. Therefore,

in our studies we used precipitating chemical sys-
tems. We included a dedicated precipitate state (a
site in precipitate state remains in this state forever)
in our cellular-automaton models and their LSI pro-
totypes, and determined that when two or more
excitation wave fronts interact (which is detected
from local configuration of excited and refractory
sites) a precipitate is formed. The approach proved
to be efficient, as demonstrated in Secs. 4 and 5,
however we were unable to find excitable chemi-
cal systems which could produce precipitate dur-
ing interaction of excitation wave fronts. Therefore,
we adapted the algorithm to nonexcitable but pre-
cipitating systems: in these systems the precipitate
is formed when reagents in the diffusive wave-front
interact with reagents in the planar substrate, and
thus every data point becomes a source of a growing
precipitate domain. The diffusive wave-front causes
an influx of substrate reagents along vectors oppo-
site to those of normals of the front. Thus at the
sites of collision of two or more diffusive wave-fronts
the substrate reagent is exhausted and no precip-
itate is formed. Bisectors of Voronoi diagram in
this case are represented by medium sites without
a precipitate.

In semi-stable copper system the inhomo-
geneties introduced into the gel cause precipita-
tion not to occur at these points. However, as the
diffusion front moves through the gel these points
expand into empty precipitate free cones. When the
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regressing edges of the expanding cones meet the
precipitation stops and a VD of the original points
marked on the gel is formed. In this case the bisec-
tors are high precipitate regions unlike the stable
system.

LSI, chemical and automaton models possess
the same degree of complexity. We demonstrated
that Voronoi diagram can be constructed in chem-
ical systems with two reagents (which produce one
precipitate) and in discrete models with two non-
quiescent states and a precipitate state, i.e. elemen-
tary processors have finite memory. All prototypes
compute Voronoi diagram in time proportional
to maximum distance between two geographically
neighboring points, i.e. time complexity has bound-
ary O(log D), where D is a diameter of data planar
set, i.e. virtually independent of number of data
points. The only disadvantage of the approach is
that the linear size of reaction–diffusion processors,
computing the diagram, is bounded by D from
below, which gives us not too satisfactory bound-
ary of space complexity o(D).

All prototypes discussed in the paper approx-
imate Voronoi diagram sufficiently well for their
metrics. Namely, chemical processors approximate
Euclidean Voronoi diagram, cellular-automaton
model A2 and LSI chip compute the diagram in
metric L∞ (and thus the resulting patterns are
“allowed” to have incomplete bisectors, as discussed
in [Adamatzky, 1996]); automaton model A1 gives
us a kind of discrete approximation of the Euclidean
diagram.

Obviously, the silicon analogues and CA mod-
els can compute VD with much greater speed than
their chemical counterparts which can take minutes
or hours depending on the system (excitable and
unstable systems are faster). Another constraint of
practical use of chemical systems is the large size.
Currently the minimum point size is limited by a
liquid drop size or an introduced inhomogeneity in
a gel — therefore cell size is limited to circa 1 mm2.

7. Summary

In this paper, we discussed the formation of Voronoi
diagrams in spatially extended two-dimensional
nonlinear systems: experimental chemical proces-
sors, cellular-automaton models and LSI chips.
We offered experimental results of fabricated RD
chip and compared the accuracy of information
processing in silicon analogs of RD processors
and their experimental “wetware” prototypes. The

underlying microscopic processes in these systems
are absolutely different, however phenomenology of
pattern spreading is remarkably similar and thus
allowed us to employ interaction of spreading pat-
tern in constructing bisectors of the diagram.
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