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Abstract

We proposed a method of implementing the Boltzmann machine neural
network on electronic circuits by making use of the single-electron
tunnelling phenomenon. The single-electron circuit shows stochastic
behaviour in its operation because of the probabilistic nature of the electron
tunnelling phenomenon. It can therefore be successfully used for
implementing the stochastic neuron operation of the Boltzmann machine.
The authors developed a single-electron neuron circuit that can produce the
function required for the Boltzmann machine neuron. A method for
constructing Boltzmann machine networks by combining the neuron circuits
was also developed. The simulated-annealing operation can be performed
easily by regulating an external control voltage for the network circuits. A
sample network was designed that solves an instance of a combinatorial
optimization problem. Computer simulation demonstrated that, through the
simulated-annealing process, the sample network can converge to the global
minimum energy state that represents the correct solution to the problem.

1. Introduction

One of the challenges in nanoelectronics is the development of
novel electronic devices that can perform neural computing by
utilizing functional properties of quantum phenomena. We
have proposed one such computation device: a Boltzmann
machine neural circuit thar utilizes the inherent stochastic
nature of single-electron tunnelling.

The Boltzmann machine is a kind of recurrent neural
network that can solve various problems in areas such as
combinatorial optimization, classification, and learning. It
consists of a large network of processing units (neurons)
interconnected bidirectionally with signal connections having
various connection weights. Each neuron receives input
signals from every other neuron and sends output signals to
every other neuron. The neuron has a binary output state
and changes its state in response to the inputs, according to
a stochastic transition rule. All neurons operate in parallel
and each one adjusts its own state to the states of all the
others; as a consequence, the whole network converges into
an optimal configuration. The structure of mathematical
problems such as combinatorial optimization can be mapped
onto the structure of a Boltzmann machine by determining
the connection weights between the neurons. In this way,

finding the optimal solution to a problem can be reduced to
finding the optimal configuration of the Boltzmann machine.
The unique and important feature of the Boltzmann machine
is its stochastic neuron operation combined with simulated-
annealing algorithms. This allows the Boltzmann machine to
reach a globally optimal configuration (and thereby an optimal
solution) without falling into local minimum configurations
(for detailed explanations, see [1,2]).

A Boltzmann machine large-scale integration (LSI) circuit
for practical use must integrate thousands of neurons on
a chip. The crucial problem in developing such LSIs is
how to implement the generation of randomness for the
stochastic neuron operation. Every neuron has to have its
own randomness because stochastic independence between
the neurons is required. Electronic circuits that are currently
available for generating randomness—such as thermal noise
amplifiers and random bit generators—consist of many device
elements and, consequently, require a large area. They,
therefore, cannot be used for LSI implementation and so
there is a need for a novel device for constructing Boltzmann
machine LSIs.

A few years ago, the authors suggested that the single-
electron circuit, a quantum electronic circuit based on the
Coulomb blockade effect in electron tunnelling, can be utilized
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for generating randomness for stochastic operations [3]. We
postulated that the single-electron circuit would concisely
produce the stochastic neuron device required for the
Boltzmann machine. To give a practical form to this idea,
we propose in this paper an actual circuit construction for the
single-electron Boltzmann machine network.

In the following sections, first, the operation of the
stochastic neuron is outlined. We present an idea for
implementing the stochastic neuron using the single-electron
circuit. The single-electron circuit is an electronic circuit
utilizing tunnel transport of electrons and has inherently
stochastic properties in its operation (section 2). We then
develop an actual circuit structure for a neuron element and
demonstrate by computer simulation that the developed neuron
circuit can successfully produce a random binary-bit stream
in response to the input signals according to the probability
function regulated by a control voltage (section 3). By
combining a number of the neuron circuits, we construct a
Boltzmann machine network; as an example, we design a
sample network circuit that represents an instance of the max
cut problem (section 4). The problem-solving behaviour of
the sample network circuit is then demonstrated by computer
simulation. It is shown that the network circuit, under the
simulated-annealing operation, does converge successfully
to its globally optimal configuration that corresponds to
the correct solution, without falling into local minimum
configurations (section 5). The authors hope that this paper
will be useful to researchers who are aiming to create neural
computing devices that utilize quantum phenomena.

2. The Boltzmann machine network and the
single-electron circuit

2.1. Function of neurons required for Boltzmann machine
operation

The Boltzmann machine consists of a network of many
identical neurons that are interconnected with each other. The
configuration of the network is illustrated in figure 1. The
output of each neuron feeds back into inputs of other neurons,
and each neuron exchanges signals with others to update its
own output. Denoted by W;; is the connection weight to
neuron i from neuron j, T; is the threshold connection weight
to neuron i from a bias that is fixed at the value of 1, and x;
is the output of neuron i. The connection weights W;; and
T; can be given any desired value under the restrictions that
W;; = Wj; and W;; = 0. The output of each neuron is binary,
and a set of neuron outputs (x;, x3, x3, etc) is called the state
of the network. We hereafter represent the neuron output by 1
or —1 (i.e. x; = 1 or —1) because the neuron circuit we have
developed (described in section 3.1) produces a bipolar-mode
output.

In this network, each neuron i takes a weighted sum of
the inputs of the other neurons and the threshold connection
weight according to the following equation

Sp= Z Wjjxj +T;.
J#i

(1

Each neuron generates an output, 1 or —1, updating the output
state continuously, following the logistic-sigmoid probability
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Figure 1. Concept of the Boltzmann machine. It is a recurrent
network consisting of many identical neurons with signal
connections. Each neuron produces a binary stochastic output.

function given by
fsi) = 1/(1 +exp(si/c)), 2

where f(s;) is the probability for generation of an output 1.
A control parameter, denoted by c, is for regulating the
probability function. It is decreased slowly from a large
positive value to zero during the simulated-annealing process.
Through this process, the Boltzmann machine network
changes its state to minimise the ‘energy’ function defined

by
—% Z Z WUI,-.'I:J' — E T,‘I,‘.
i i i

By adjusting connection weights W;; and T;, we can relate
the energy function of the network to the objective function
of a given optimization problem. In this way, we can find the
solution to a problem simply by observing the final state that
the network reaches.

(3)

2.2. The concept of the single-electron circuit

The single-electron circuit is an electronic circuit consisting
of tunnel junctions and capacitors designed to manipulate
electronic functions by controlling the transport of individual
electrons (for a detailed explanation, see [4]). A single-
electron circuit has a number of nodes that are interconnected
by the tunnel junctions. Electrons in each node can tunnel to
another node through the tunnel junction. The internal state of
the circuit is determined by the configuration of its electrons
(i.e. the pattern in which the electrons are distributed among the
nodes). The circuit changes its electron configuration through
electron tunnellings in response to the inputs and, thereby,
changes its output voltage as a function of the inputs, A
change of the electron configuration caused by a tunnelling
event can occur, at low temperatures, only when the free
energy of the circuit decreases during the tunnelling event.
This phenomenon is called the Coulomb blockade effect.
Utilizing this phenomenon, the single-electron circuit controls
the transport of individual electrons in order to produce various
functions such as digital logic and memory operations.
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The single-electron circuit has been receiving increasing
attention because it can be used to produce LSIs that combine
large integration and ultra-low power dissipation. The key
point for constructing single-electron devices is to fabricate
the circuit elements (tunnel junctions and capacitors) in very
minute dimensions (50 nm or less) because the Coulomb
blockade effect emerges only when the capacitance of each
element is reduced to femtofarads or less. The technology for
such nanofabrication is still immature but is making steady
progress. Several elementary circuits, such as logic gates
and memory cells, have been produced in recent years, and
a prototype of single-electron LSI can be expected in the near
future.

2.3. Stochastic properties of single-electron circuits

A conspicuous property of the single-electron circuit is that
the circuit shows stochastic behaviour in its operation. This is
caused by the fact that the electron tunnelling is a probabilistic
phenomenon. A single-electron circuit changes its electron
configuration in response to the inputs through a sequence of
electron tunnellings, where the waiting time for each tunnel
event shows a probabilistic fluctuation (i.e. a tunnelling might
occur after a very short time, or it might not occur for a long
time; see the appendix). If we construct a single-electron
circuit such that its output is modulated by the probabilistic
fluctuation in the tunnel waiting time, then we can obtain
novel electronic devices showing stochastic operation. Since
the stochastic property is inconvenient for ordinary digital
applications, single-electron circuits have been designed in
such a configuration so that the stochastic property will be
suppressed as thoroughly as possible. In contrast, however,
the stochastic properties can be well utilized for the present
purpose; that is, creating a Boltzmann machine device with a
compact design.

3. Single-electron circuit for the Boltzmann machine
neuron

3.1. Creating the stochastic neuron using a single-electron
circuit
The point of our idea is that the operation of a Boltzmann
machine neuron can be produced by a digital oscillator
consisting of a single-electron circuit. A digital oscillator is a
circuit that generates an output of a 1/—1 bit stream; and if the
oscillator consists of a single-electron circuit, then the duration
of an output 1 (or an output —1) will fluctuate randomly
because of the probabilistic nature of electron tunnelling.
As a consequence we will be able to obtain an output of a
random 1/—1 bit stream required for the Boltzmann machine
operation. To produce the complete function of the neuron,
the digital oscillator must be designed so that the probability
for an output | can be modulated by a signal input (s; in
equation (1)), according to the logistic-sigmoid probability
function regulated by a control input (¢ in equation (1)). For
this purpose, we take Tucker's single-electron inverter and
modify its circuit configuration to create the neuron function
(for details of Tucker’s original circuit, see [5]).

The circuit we developed for the neuron device is
illustrated in figure 2. It consists of four tunnel junctions (C;,
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Figure 2. Configuration of the unit-neuron circuit for
single-electron Boltzmann machines.

through C;4) and seven capacitors (C through C7), and is
supplied with two bias voltages, i.e., a positive voltage Vi,
and a negative voltage —V,,. The offset voltage V), is used
to adjust the operating point of the circuit. The circuit, with
the appropriate set of parameters given later, operates as an
unstable multi-vibrator or a square-wave oscillator. That is,
the circuit repeats a cycle of transferring one electron from
— Vs to Vyy by making an electron tunnel from one node
to another in the following sequence: (tunnelling 1) node
L — Vg4, (tunnelling 2) node M — node L, (tunnelling 3)
—V,s — node N, and (tunnelling 4) node N — node M (see
section (3.2)). The output voltage x; of the circuit is nearly
equal to V,u (an output 1) during a period between tunnelling 2
and tunnelling 4 because, in this period, an electron is extracted
from node M (output node) and, consequently, node M is
charged positive. In the remaining period, the output is nearly
equal to —V;; (an output —1). The time that the node M is
charged positive depends on the waiting time for tunnellings,
so the output randomly alternates between 1 and —1 according
to the probabilistic fluctuation in the tunnel waiting time. The
probability for an output I can be controlled by external voltage
s;. Thus the circuit accepts voltage input s; (the weighted sum
of inputs) and produces the corresponding voltage output x; ina
form of arandom 1/—1 bit stream. We hereafter call this circuit
aunit-neuren circuit. (This circuit does not include a subcircuit
for calculating the weighted sum of inputs 5;. For calculating
s; according to equation (1), we will use an additional capacitor
subcircuit, as described in section 4.)

To create the stochastic neuron operation, we set the circuit
parameters so that the circuit can operate under oscillating
conditions. In determining the optimum parameters, we
used the stability diagram of the circuit as a guide map.
(The stability diagram illustrates the internal states of a
single-electron circuit in a multi-dimensional space of circuit
variables—namely, the voltages of powers and inputs, and the
capacitances of tunnel junctions and capacitors.) An example
set of the capacitance parameters is

C}'l =C_!4 =laF,
Cy=C;=124aF,
Cs = Cs = 104F,

Cjz =Cj3 :2&F.
Cy=Cy=44F, (4)
C7 =124 aF.
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Figure 3. Stability diagrams of the unit-neuron circuit given in
figure 2, plotted on a plane of input voltage s, and offset voltage V.
For capacitance parameters, see the text. The shaded regions are
unstable regions. Figures (a) through to (d) correspond to a gradual
increase in Vyy and V,,. The value of (V,,, —V,,) 1s: (@) (2.72mV,
=3.29mV), (b) (2.74 mV, —3.30mV), (c) (2.80 mV, —3.36 mV),
(d) (2.87mV, =3.43mV).

3.2. Operation of the unit-neuron circuit

The internal state of the unit-neuron circuit is expressed by the
numbers of excess electrons (/, m, n) on the three nodes (L, M,
and N) in the circuit. Assuming the capacitance parameters
given by equation (4), we drew the stability diagram in a four-
dimensional space of four voltage variables (s;, Vj, Vg4, and
—Vy:). In figures 3(a) through to 3(d), part of the diagram
is illustrated on a plane of two voltage variables, input s,
and offset Vj,. The two white regions are stable regions, in
which the circuit stabilizes at internal states (0, —1,0) and
(0,0, 0); the former state produces a positive output voltage
(an output 1), while the latter produces negative output voltage
(an output —1). The output state for each internal state is
illustrated by putting a letter (H for an output 1, or L for an
output — 1) before the electron number set. The shaded regions
are unstable regions in which electron tunnelling frequently
occurs and, consequently, the circuit alternates between two or
more internal states to output a random 1/—1 bit stream. The
width of the unstable region can be controlled by regulating
bias voltages Vy; and —V; as shown in figures 3(a) through
to (d).

We operate the unit-neuron circuit on an operating line
illustrated by PQ in figures 3(a) through to (d). It can be
expected that the probability for generation of an output 1 can
be changed from 1 to O continuously by increasing input s; to
move the operating point from the H(0, —1, 0) region to the
L(0, 0, 0) region on the line P Q. In addition we will be able
to change the control parameter for the probability function by
regulating bias voltages V4 and — V,; to change the width of
the unstable region, In regulating V,, and —V,;, the value of
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Figure 4. Output voltage waveforms for the unit-neuron circuit with
the control-parameter set of (2.80 mV, =3.36 mV, —0.87mV).
Simulated for two input voltages: (a) s, = 1 mV and

(b) s, = —1 mV, For circuit parameters, see the text. Temperature is
0OK.

offset V}, has to be adjusted simultaneously so that the operating
point for zero inputs (s; = 0) will be situated on the centre line
of the unstable region and, thereby, the probability for an output
1 will exactly be 0.5 at zero inputs. We hereafter call a set of
(Viaa, —Vis, and V}) the control-parameter set.

To confirm our expectation, we simulated the circuit
operation; in simulation, we employed the Monte Carlo
method combined with the basic equations for electric-charge
distribution, charging energy, and tunnelling probability (for
this method, see [6] and the appendix). The parameters used
here are the same as those given in section 3.3, with tunnel
resistances of 100 k€2 for tunnel junctions C; and Cj4, and
5 MS for Cj; and C;3. The temperature was assumed to be
OK.

A result of the simulation is illustrated in figure 4 for the
control-parameter set of (2.80 mV, —3.36 mV, —0.87 mV) that
corresponds to the operating line P Q in figure 3(c). The figure
shows the output voltage waveform (arandom 1/—1 bit stream)
for two values of the input voltage: (a) s; = 1 mV (point ¥ in
figure 3(c)) and (b) s5; = —1 mV (point X in figure 3(c)). As
we expected, the probability for an output 1 can be changed
by input s5;. The state of a negative output (output *—17)
is dominant for a negative value of s; (figure 4(a)), while
the state of a positive output (output ‘1’) is dominant for a
positive value of s; (figure 4(b)). Intermediate states are also
generated (i.e. states (0, —1, 1) and (-1, 0, 0) in figure 4(a)),
but this is not a problem because their duration is always short
regardless of the input voltage value. In this example, the
circuit changes its internal state in a cycle of: L(0,0,0) —
L(—1,0,0) = H(0, =1,0) — H(0,—1,1) = L(0,0,0). A
similar operation is observed in other control-parameter sets.

The probability for an output 1 is illustrated in figure 5(a)
as a function of input s;, for various control-parameter sets
(Viaa, —Vis, Vp). It is obtained by observing the output 1/—1
stream for 10 us and measuring the total duration of an
output 1. The probability function required for the stochastic
neuron can be obtained easily. The probability can be
controlled by regulating the control-parameter set; the number
(#1 through #4) for each curve indicates a specific control-
parameter set that is required for producing the characteristic
of the curve. Figure 5(b) illustrates a diagram for setting the
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Figure 5. Probability function of the unit-neuron circuit with the
device parameters in the text: (a) the probability of generating an
output | for various control-parameter sets, and (b) a diagram for
setting the control-parameter set. Curves #1 through #4 in (a) are
obtained for the control-parameter sets #1 through #4 in (b).

control-parameter set (Vggq, — V5, Vi), where the numbers #1
through #4 indicate the sets for producing the curve #1 through
#4 in figure 5(a) (e.g. the set for curve #3 can be obtained for
Via = 2.80mV, —V;; = =3.36mV, and V;, = —0.87 mV). In
curve #1, the circuit acts as a simple threshold element without
stochastic operation, which corresponds to the condition of
¢ = 0 in equation (1). (Strictly speaking, the obtained
characteristic is somewhat different from that of equation (1);
i.e. the characteristic is a line sigmoid function rather than a
logistic sigmoid. This point leaves room for improvement, but
for now we will use this neuron circuit.)

4. Designing the Boltzmann machine network

The Boltzmann machine can be constructed by combining the
unit-neuron circuits into a network. The overall configuration
of the network circuit is illustrated in figure 6. The
network consists of a number of unit-neuron circuits with
buffer inverters, negative-weight inverters, and connection
capacitors. The buffer inverter is added to each unit-neuron
circuit for intensifying the power of load drivability. We define
the output of neurons as the voltage of buffer inverter outputs
(14, 2+, 3+, etc). The negative-weight inverters produce
voltage signals (1—, 2—, 3—, etc) that are complementary (o
the neuron outputs (1+, 2+, 3+, etc) and the complementary
signals are used for obtaining negative-weight connections.
(For the buffer inverters and the negative-weight inverters, we
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used a single-electron inverter illustrated in figure 7.) Both
the output and its complement of each unit-neuron circuit feed
back into inputs for other unit-neuron circuits. The connection
between two neurons is established by a coupling capacitor Cj;.
The threshold for each neuron is set up by positive- bias voltage
V) (or by negative voltage —V,) with a coupling capacitor C;.

Connection weights between neurons can be set at any
values by choosing the capacitances of the coupling capacitors.
Each weight (W;; and T; in equation (3)) is given by

C;
|Wi;| = E,_"-':,{*'_G'
IT;| = E—L—Jgﬁq.

For a positive-weight (W;; > 0), the coupling capacitor is
connected with the input node of neuron i and the output
node (14, 2+, 3+, etc) of neuron j, and for a negative-weight
(Wi; < 0), with the input node and the complementary-output
node (1—,2—,3—, etc). The threshold coupling is made
between the input node and positive-bias node V1 if T; > 0,
and between the mnput node and the negative-bias node — V2
if T; < 0. The capacitances C;; and C; have to be set at such
values that the symmetry in connection (i.e. W;; = Wy; for all
i, j) can be established. Under these conditions, the network
circuit will operate as a complete Boltzmann machine.

(5)
and

5. Problem-solving operation of the network circuit

By setting appropriate values for the coupling capacitances,
we can implement various optimization problems on the
network circuit. As an example, we construct here a sample
network circuit that solves an instance of the max cut problem,
and demonstrate by computer simulation the problem-solving
operation of the network circuit.

5.1. Implementing the max cut problem on the network circuit

The max cut problem is stated as follows: given a graph
G = (V, E) with positive-weights on the edges, find a partition
of the vertices V = {1, 2, ..., n} into two disjoint sets V and
Vi such that the sum of the weights of the edges that have
one endpoint in Vg and one endpoint in V; is maximal. To
formulate the objective function for this problem, we define
here a number of variables. Let d;; be the weight associated
with the edge {i, j} (by definition, d;; = dj;) and let x; be a
1/—1 variable defined as

xi=1(fie V)

xi =—1(fi € Vp), ©®

then the max cut problem can be formulated as maximise
30D /4 (i — x))?, (7)
i
which can be rewritten using x;2 = x;? = 1, as minimise

——% Z Zd,-}x,-x_,-.
i

The max cut problem can then be implemented by designing a
network circuit such that the output of each neuron represents

(8)
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Figure 6. Overall configuration of the single-electron Boltzmann machine network. The neuron outputs (1+, 2+, 3+, etc) and the
complementary-outputs (1—, 2—, 3—, elc) feed back to become the inputs for the unit-neuron circuits. The connection between two neurons
is established by the coupling capacitor C,;, and the threshold input for each neuron is set by the coupling capacitor C;.
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Figure 7. A single-electron inverter used for the buffer inverters and
the negative-weight inverters together with its circuit parameters
(tunnel resistance = 100 k<2 for all of the four junctions).

each variable x;. As an example, here we take up a weighted
graph given in figure 8(a) and design a network circuit whose
structure is isomorphic to the graph. To implement this
problem instance, we prepare the network circuit with five
neurons and represent vertex i of the problem graph by the ith
neuron (i = | through 5). The required connection weights
W,; between the neurons can be determined as in figure 8(b) by
comparing the objective function given by equation (8) with
the energy function given by equation (3). From the weight
values W;; we can determine a set of the coupling capacitances
for the circuit construction by using equation (5). The result
is given in figure 8(c). The network circuit with this coupling
capacitance set will hereafter be called the sample network.

vertex -:-.___*‘ 1
number of vertex '

weight of edge —>4

(a)

Wiz=Wa1=-4 Ciz2=6.80aF (21=8.00aF
Wii=Wii=-2 Ci3=343aF C31=267aF
Wid = Wi = -1 Ci4=1.71aF C41=23.00aF
Waa=Wi=-2 C23=400aF C(C32=2.67aF
Wis=Wsa=-5 Cis=6.66aF (s53=7.50aF
Wis = Ws4 = -3 C45=9.00aF (Cs54=4.50aF
Ti=T2=T3=0 Ci=Cr=C3=0
others =0 others =0

(b) (c)

Figure 8. An instance of the max cut problem and the corresponding
connection weights and coupling capacitances: (a) a weighted graph
for the problem; (b) connection weights W;; between neurons; and
(c) coupling capacitances for the network circuit.

5.2. Energy function and local minima in the sample network

The internal state of the sample network is expressed by a set
of five neuron outputs (x;, x2, X3, X4, Xs), where x; is 1 or —1.
For simplicity, let us represent the set by a code of signs such as
(++—+—), where + denotes ‘x; = 1’ and — denotes ‘x; = —1".
The sample network has 32 possible internal states. The value
of the energy function calculated from equation (3) is plotted
in figure 9 for all the states. States (—+++—) and (+ ———+)
are the global minimum and represent the correct solution to
the problem (that is, the maximal cut for the problem graph of
figure 8(a) is given by two disjointed sets of vertices {1, 5} and
{2, 3, 4}). The network can change its internal state through
the transition of a Hamming distance of 1. From the second
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Figure 9. Energy diagram for the sample network circuit
corresponding to the problem instance of figure 8(a). The notation,
such as (+ + — + —), denotes the set of five neuron outputs. States
(—+++ —) and (+ — — — +) correspond to the global minimum that
represents the correct solution to the problem. The second lowest
states (+ — + + —) and (— + — — +) correspond to local minima.

lowest states (—++—+) and (+— —+—) to the global minimum
states, there is no transition path of a Hamming distance of 1—
therefore these two states act as a local minimum.

5.3. Problem-solving operation of the sample network

For problem solving, it is essential that, starting with a given
initial state, the network circuit should converge to its global
minimum energy states. To observe the behaviour of the
sample network, we simulated the state transition of the
network.

We simulated the behaviour of the sample network, first,
without the annealing operation. (In this examination, all
the unit-neuron circuits were set at the condition of simple
threshold (curve #5 in figure 5(a)).) The result is illustrated in
figure 10. The network was initially set at state (+ + + + +),
then it was allowed to change its state without restraint. After
some transition time the circuit stabilized into a final state.
This procedure, a trial, was repeated many times using a
different series of random numbers; the results of three trials
are illustrated in the figure. The network was sometimes able
to converge into the global minimum state (— + + + —) or
(+ — — — +) (as shown by number 1), but frequently became
stuck in the local minimum state (+—++—) or (—+— —+) and
could not reach the global minimum (as shown by numbers 2
and 3).

We then operated the sample network under the annealing
operation. In the annealing, the control-parameter set for
the unit-neuron circuits was gradually changed with the
advance in time, according to an appropriate schedule. In the
present experimentation, we changed the control-parameter
set gradually, following a cooling schedule given by Vi =
2.72+0.88 exp(—1/50) (mV) (— V;; and V}, were also changed
in accordance with the curves in figure 5(b)), where £ is time in
ns. The simulation result of the circuit operation is illustrated
in figure 11. The circuit was initially set at state (+ + + + +),
then was allowed to change its state under the annealing
operation, The results for one trial are plotted in figure 11.
The circuit successfully reached the global minimum state. We
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Figure 10. State transition in the sample network without the
annealing (computer simulation), The results of three trials are
plotted.
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Figure 11. State transition in the sample network under annealing
(computer simulation). The result of one trial is plotted and it can be
seen that the network successfully reaches the global minimum
slate.

repeated the same trial many times and confirmed that every
trial resulted in successful convergence. In this way, we can
find the global minimum state of the network and, thus, the
correct solution to the problem.

6. Conclusion

The authors developed a method of implementing the
Boltzmann machine on electronic circuits using single-
electron circuit technology. The single-electron circuit
has a stochastic nature of operation because 'the waiting
time for electron tunnelling shows probabilistic fluctuation.
Therefore, the operation of the Boltzmann machine can
be easily implemented using such a single-electron circuit
that modulates its output in response to the fluctuation in
the tunnel waiting time. We developed a single-electron
neuron circuit that can produce the function required for
the Boltzmann machine neuron; the proposed neuron circuit
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produces as an output a 1/—1 bit stream in response to the
weighted sum of neuron inputs, following the probability
function regulated by the control-parameter set. A method
of constructing Boltzmann machine networks by combining
the neuron circuits was also developed. In the network circuit,
the simulated-annealing operation can be performed easily by
gradually changing the control-parameter set for the neurons.
We designed a sample network circuit that implemented an
instance of the max cut problem. Computer simulation
showed that, through the simulated-annealing process, the
sample network can converge to its global minimum energy
state, which represents the correct solution to the problem.
Our results show that large Boltzmann machine LSIs can be
fabricated compactly using single-electron circuits.
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Appendix

Outlined below is the procedure of the Monte Carlo simulation
for single-electron circuits employed in this paper. This is an
excerpt from [6]. For details, see the reference.

Consider a circuit consisting of tunnel junctions (tunnel
capacitors), ordinary or nontunnel capacitors, and voltage
sources for power, clocks, and signal inputs. The internal state
of the circuit is expressed by a set of numbers that represent
the count of excess electrons on the nodes in the circuit. (In the
following, state means this set of electron numbers.) Choose
a starting state of the circuit, and set time = 0. Electron
tunnelling or time-dependent behaviour of the circuit for the
given values of the source voltages is simulated as follows.

Step 1. Compute electrostatic energy Eo (the sum of
electrostatic energy on the tunnel junctions and ordinary
capacitors) for the current state. Then enumerate all possible
subsequent states and compute the electrostatic energy E;
for each subsequent state i. (A subsequent state means
a state into which the current state can be transformed by
one tunnelling of an electron. If the number of the tunnel
junctions is N, there are 2N possible tunnellings and therefore
2N subsequent states.) Also compute the energy E;, that
the voltage sources will supply in the transformation of the
circuit from the current state to each subsequent state i.

Step2. Compute the energy difference AE; (=Ey— E; 1 +E;)
for each subsequent state. (It is assumed that, in a tunnel event,
AE; is dissipated in a form of heat through the interaction
between the electron and the crystal lattice of the conductive
material that forms the node of the single-electron circuit.)
From the value of AE;, calculate the waiting time for a
tunnelling process corresponding to each subsequent state.
The waiting time t; is given as
11

r,-:-—ln—

i (A.1)

where y is a uniform random number (0 < y < 1) generated
for each tunnel event, and T'; is the mean tunnelling rate (the
mean number of electrons that tunnel in one second) given by

. AE;
"7 e2Rr{l —exp(—AE; /kgT)}

(A.2)

where Ry is a tunnelling resistance of the tunnel junction
capacitor, kg is the Boltzmann constant, e is the elementary
charge, and T is temperature. (AtO0K, I'; = AE;/(e?Ry) for
AE; > 0,andI; =0for AE; <0.)

Step 3. After calculating the waiting time t; for all possible
tunnellings, take the tunnel event that has the shortest waiting
time, and accept the corresponding subsequent state as the
current state. Then put the time forward by t; and return to
step 1 to repeat the iterations.
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